
Proactivizer: Transforming Existing Verification Tools

into Efficient Solutions for Runtime Security

Enforcement

Suryadipta Majumdar1, Azadeh Tabiban2, Meisam Mohammady2, Alaa Oqaily2,

Yosr Jarraya3, Makan Pourzandi3, Lingyu Wang2, and Mourad Debbabi2

1 Information Security and Digital Forensics, University at Albany, USA

smajumdar@albany.edu
2 Concordia Institute for Information Systems Engineering, Concordia University, Canada

{a_tabiba,m_ohamma,a_oqaily,wang,debbabi}@encs.concordia.ca
3 Ericsson Security Research, Ericsson Canada, Canada

{yosr.jarraya,makan.pourzandi}@ericsson.com

Abstract. Security verification plays a vital role in providing users the needed

security assurance in many applications. However, applying existing verification

tools for runtime security enforcement may suffer from a common limitation, i.e.,

causing significant delay to user requests. The key reason to this limitation is that

these tools are not specifically designed for runtime enforcement, especially in a

dynamic and large-scale environment like clouds. In this paper, we address this

issue by proposing a proactive framework, namely, Proactivizer, to transform

existing verification tools into efficient solutions for runtime security enforce-

ment. Our main idea is to leverage existing verification tools as black boxes and

to proactively trigger the verification process based on dependency relationships

among the events. As a proof of concept, we apply Proactivizer to several exist-

ing verification tools and integrate it with OpenStack, a popular cloud platform.

We perform extensive experiments in both simulated and real cloud environments

and the results demonstrate the effectiveness of Proactivizer in reducing the re-

sponse time significantly (e.g., within 9 milliseconds to verify a cloud of 100,000

VMs and up to 99.9% reduction in response time).

Keywords: Proactive framework, runtime security enforcement, security verification.

1 Introduction

Security verification has been playing an important role in protecting a wide-range of

IT infrastructures mainly due to its capability of providing security guarantee in di-

verse environments (e.g., networking [13], cyber physical systems [42] and software

programs [29]). However, there is a paradigm shift in the concept of security solutions

especially after the wide-adoption of clouds [1, 33]; where it is now essential to prevent

a security breach to avoid its potentially unrecoverable damages and ensure continu-

ous security guarantee; both of which can only be achieved through runtime security

enforcement.

To that end, most existing security verification tools (e.g., [6, 8, 20, 22, 25, 30, 39])

for the cloud fall short in dealing with the dynamic and large-scale nature of clouds and

2

offering runtime security enforcement. Specifically, those tools may cause significant

delay in responses at runtime. This is not surprising since those tools are not specifically

designed for runtime security enforcement of a large-scale dynamic environment like

clouds; which also implies that modifying those tools for this purpose can be difficult.

We further illustrate this limitation through a motivating example.

Motivating Example. The upper part of Figure 1 shows the typical response time when

several existing verification tools (e.g., declarative logic programming (Datalog) [30,

19] and boolean satisfiability problem (SAT) [26], graph theory [6] and access con-

trol [20]) are utilized for runtime security policy enforcement, and highlights their com-

mon limitation. The lower part of the figure illustrates our key ideas to overcome that

limitation, as detailed in the following.

– Even though these tools have been successful in diverse security applications, such

as verifying virtual infrastructure [6, 30] and virtual network [19, 30], and enforcing

access control policies [20, 26] in the cloud, all of them may suffer from a com-

mon limitation, i.e., causing a significant delay (e.g., 15 seconds to four minutes),

when applied to continuously protecting the cloud through runtime security enforce-

ment [6, 19, 20, 26, 30].

– The complexity of those tools and the fact that they were not initially designed for

runtime enforcement imply that it could require tremendous amounts of time and

effort to modify those tools for efficient runtime enforcement.

– Alternatively, our key idea is to take a blackbox approach, and proactively trigger

those tools based on predicted events, such that we will already have the verification

results ready, when the actual events arrive (e.g., conducting verification of the add

network event in advance as soon as the create VM event occurs).

Datalog

Solver [30]
Create VM Add Network...

Verification
30 seconds

Executing Existing

ToolsOur

Solution

Enforcement

SAT

Solver [26]
Create User Grant Role...

Verification
15 seconds

Graph

Theoretic [6]

Add Port

Group

Remove Port

Group...

Verification
4 minutes

Past

Event

Access

Control [20]

Create VM
Add Security

Group Rule...

Verification
1 minute

E
x
is

ti
n
g
 T

o
o
ls

Key ideas:

- Proactive verification

- No change in verification

tools

Current

Event

Common Limitation:

- Significant Delay

Enforcement

Verification

Fig. 1: Identifying the common issue in existing verification tools to offer runtime se-

curity enforcement and positioning our solution

More specifically, we propose a proactive verification framework, which considers

those verification tools as blackboxes and transforms them into efficient solutions for

runtime security enforcement. First, we develop a predictive model to capture various

dependency relationships (e.g., probabilistic and temporal) to anticipate future events.

Second, we design our proactive verification framework, namely, Proactivizer, with de-

tailed methodology and algorithms. Third, as a proof of concept, we apply Proactivizer

3

to several existing verification tools (i.e., Congress [30], Sugar [38], Weatherman [6]

and Patron [20]), which adopt diverse verification methods, i.e., Datalog, SAT, graph-

theoretic and access control, respectively. Fourth, we detail our implementation of the

proposed framework based on OpenStack [31], and demonstrate how our system may

be easily ported to other cloud platforms (e.g., Amazon EC2 [2] and Google GCP [12]).

Finally, we evaluate our solution through extensive experiments with both synthetic and

real data. The results confirm our framework can reduce the response time of those ver-

ification tools to a practical level (e.g., within nine milliseconds for 85.8% of the time).

In summary, our main contributions are as follows.

– As per our knowledge, we are the first to propose a generic proactive framework

to transform existing verification tools into efficient solutions for runtime security

enforcement. The main benefit of this framework is that it requires little modification

to those tools.

– By applying the Proactivizer framework to a diverse collection of existing verifi-

cation tools (e.g., Datalog, Satisfiability solver, access control and graph theoretic

solution), we demonstrate its potential as a low cost solution for improving the ef-

ficiency of other existing verification tools in a wide range of applications (e.g.,

IoTGuard [7] and TopoGuard [15, 36]).

– As a proof of concept, we integrate our solution into OpenStack [31], a major cloud

platform, and evaluate the effectiveness of our predictive model (e.g., up to 93%

prediction accuracy) and the efficiency of our runtime security enforcement system

(e.g., responding in maximum few milliseconds) using both synthetic and real data.

The remainder of the paper is organized as follows. Section 2 provides preliminar-

ies. Section 3 presents our framework. Sections 5 and 6 provide the implementation

details and experimental results, respectively. Section 7 discusses different aspects of

this work. Section 8 summarizes related works. Section 9 concludes the paper.

2 Preliminaries

This section provides a background on dependency relationships (which will later be

used to build predictive models in Section 3.2) and defines our threat model.

2.1 Dependency Relationships

We mainly consider three types of dependency relationships: structural, probabilistic

and temporal. In the following, we explain them by taking cloud events as examples.

Structural Dependencies. Fig. 2(a) shows an example of structural dependencies in

the cloud based on [23]. The structural dependency represents the relationships among

cloud events, which are imposed by the cloud management platform (e.g., Open-

Stack [31]), e.g., a descendent node (or event) cannot occur before any of its ancestors.

Probabilistic Dependencies. Fig. 2(b) shows an example of the probabilistic dependen-

cies as proposed in [24]. The probabilistic dependency indicates the behavioral pattern

of cloud events, e.g., the probability of occurrences of a descendent node depends on

the occurrences of its ancestors.

4

0.6250.375

0.82

0.43

Stop VM

Delete

VM

Create

Tenant

Update

Port

(a) (b)

Create

Router

Add

Interface

Add Routing

Rule

4s

11s

21m

9m

Create

Subnet

Create

VM

(c)

Create

Router

Create

Network

Create

Subnet

Create

Port

Create

VM

Start

VM
Add SG

Rule

Delete

DG Rule

0.18

1.0

Fig. 2: Examples of (a) structural, (b) probabilistic, and (c) temporal dependency rela-

tionships among cloud events

Temporal Dependencies. Fig. 2(c) shows an example of temporal dependencies. This

dependency indicates the time intervals between occurrences of different events, e.g., a

descendent node occurs with an average interval from the occurrences of its ancestors.

2.2 Threat Model

In the remainder of this paper, we will focus on cloud platforms. We assume that the

cloud management platforms: a) may be trusted for the integrity of the API calls, event

notifications, and database records (existing techniques on trusted computing and re-

mote attestation may be applied to establish a chain of trust from TPM chips embedded

inside the cloud hardware, e.g., [16, 3, 34]), and b) may have implementation flaws, mis-

configurations and vulnerabilities that can be potentially exploited by malicious entities

to violate security policies specified by cloud tenants. The cloud users including cloud

operators and agents (on behalf of a human) may be malicious. Any threats directing

from the cloud management operations is within the scope of this work. Therefore, any

violation bypassing the cloud management interface is beyond the scope of this work.

Also, our focus is not to detect specific attacks or intrusions, even though our frame-

work may catch violations of specified security policies due to either misconfigurations

or vulnerabilities. We assume that before our runtime approach, an initial verification is

performed and potential violations are resolved. However, if our solution is added from

the commencement of a cloud, obviously no prior security verification is required.

3 The Proactivizer Framework

This section presents the methodology of the Proactivizer framework.

3.1 Proactivizer Overview

Figure 3 shows an overview of our framework. There are three major steps of the Proac-

tivizer framework: prediction, proactive verification and runtime enforcement. In Step

1 (detailed in Section 3.2), Proactivizer first extracts dependency relationships among

cloud events from the historical data (e.g., logs), then builds a predictive model leverag-

ing those dependencies and finally predicts future events utilizing the predictive model.

In Step 2 (detailed in Section 3.3), to conduct proactive verification on the predicted

future event, Proactivizer first prepares inputs related to that event for different verifica-

tion tools, then executes those tools for verification and finally interprets the obtained

5

verification results to prepare a watchlist (which is a list of allowed parameters for

that future event). In step 3 (detailed in Section 3.4), for runtime security enforcement,

Proactivizer intercepts critical events (which may cause potential violation of a security

policy), then checks its parameters against the prepared watchlist and finally enforces

the decision (e.g., allow or deny). In the following, we detail each step.

Cloud

Management

Platform

Security Policies

Critical Event List

Step 1: Prediction

b. Extracting

Dependencies

c. Building

Predictive Models

Step 2: Proactive

Verification

Preparing Inputs

c. Preparing

Watchlists

Proactivizer

Verification Tools
E.g., Datalog,

SAT, Graph-

theoretic, Etc.

Tool1 Tool2 ToolN...

Verification Tools

Input1

Cloud

Security Policies

Critical Event List

Step 1: Prediction

Extracting

Dependencies

Building

Predictive Models

Step 2: Proactive

Verification

Preparing Inputs

Preparing

Watchlists

Step 3: Runtime

Enforcement

Intercepting

Critical Events

Checking

Watchlists

Enforcing

Decision

Proactivizer

Verification Tools
E.g., Datalog,

SAT, Access

Control, Etc.

Tool1 Tool2 ToolN...

Verification Tools

Input1 … InputN

Output1 … OutputN

Predicting Future

Events

Fig. 3: A high-level overview of Proactivizer

3.2 Prediction

This section illustrates the prediction steps using an example and then elaborates them.

Example 1 Figure 4 shows an example of three major steps of building the predictive

model. First, Proactivizer extracts dependencies (e.g., transitions, frequencies and inter-

vals) from the cloud logs. The transition, E1-E2, indicates that event E1 occurs before

event E2. The corresponding frequency, 5, means that transition E1-E2 has appeared

five times. The following interval, 553, says that event E2 occurs on average 553 sec-

onds after the occurrence of event E1. Second, it builds the predictive model from those

transitions; where the edge between events E1 and E2 indicates transition E1-E2, and

the label on that edge, f (p1, t1), is the prediction score (discussed later in this section)

from the frequency (p1) and interval (t1). Third, it predicts critical events (E4 or E5)

using this model. From the current event, E1, it predicts event E4 as a potential future

event, because its prediction score, f1, is greater than that of event E5 (f2). In Example

2, we show how to conduct the proactive verification of event E4

E1

E2 E3

E4
E5 E6

f(p2, t2)f(p1, t1)

f(p5, t5) f(p4, t4)f(p3, t3)

Extracted Dependencies

Transition Frequency Interval

E1-E2 � ���

E2, E� 7 221

E�-E� 6 190

….

E1-E� � �1�

Predictive Model

Compute

Network

Cloud Event

Logs

….

E1

E2 E�

E�
E� E�

f	p2, t2
f	p1, t1

f	p�, t�

f	p�, t�

f	p, t

f1

f2

Predicted Event

Current Event: E1

Future Event� E�

Fig. 4: An example of different steps of the Proactivizer prediction

Log Processing. The processing of logs is mainly to prepare the data to build the pre-

dictive model. We describe its major steps (which are mostly inspired by LeaPS+ [27])

as follows. First, we parse raw cloud logs and label all fields of each log entry. Second,

we identify the event type (i.e., generic operation name) based on the cloud-platform

6

API documentation. Third, we prepare the whole chain of identified events partitioned

into transitions. Fourth, we obtain their frequencies and intervals. Finally, those transi-

tions and their frequencies are utilized to obtain a probabilistic model (e.g., Bayesian

network), which is then forwarded to build the predictive model. Note that Proactivizer

periodically re-evaluates this Bayesian network for subsequent intervals.

Building the Predictive Model. Figure 5 shows the inputs and output of our time-series

predictor [14] . The inputs are mainly the Bayesian networks obtained from the previous

steps for different time periods, and the time intervals between event transitions. Then,

we feed these intervals and the corresponding Bayesian network for a certain period to

the time-series predictor for training. After the (k− 1)th (where k is an integer num-

ber) step of training, we predict the conditional probability, Pt(B|A), between events B

and A at a given time t in the future. Thus, the predictor also measures the conditional

probability for non-immediate transitions (e.g., Pt(D|A)). Our predictor follows a con-

tinuous training, part of which may update the value of Pt(D|A) at the step k+1, and

progressively updates the model. The effectiveness of our predictive model is evaluated

in Section 6. we utilize this model to conduct the proactive verification as follows.

Bayesian Model

B

F C

G
E D

�.12�

A

�.�2� �.2�

1.�

�.�

�.�

�.12�

Step k

Time-

Series

Predictor

�.���

P �F|A�

,t� k
t

P �F�C�

,t� k
t

P �F�C�

,t� k
t

�.8��

P �F�A�

,t� k
t

Predictive Model

B

F C

G E D

A

Step k, k+1, ...

P �B|A�, t� k

P �C�B�

,t� k
t

P �C�A�

,t� k
t

P �D|C�, t� k
t

P �D�B�

,t� k
t

P �E�D�

,t� k
t

P �E�C�

,t� k
t

t

�.���

P �G�C�

,t� k
t

P �F�A�

,t� k
t

P �F�C�

,t� k
t

Transitions Start-time End-time

A-B 2�1�-��-��-���8�� 2�1�-��-��-���1��8

B-D 2�1�-��-��-���1��8 2�1�-��-��-8�11���

….
Time Intervals

Fig. 5: An excerpt input/output of the time-series predictor

3.3 Proactive Verification

This section illustrates the proactive steps using an example and then elaborates them.

Example 2 Figure 6 shows different steps of our proactive verification for the predicted

event (E4) in Example 1. First, Proactivizer prepares the inputs for different verification

tools to verify the predicted event, E4, with the current event parameter, S1. To that end,

it identifies policy P2 as one of the affected policies by critical event (CE) E4. Then,

the input for tool Tool1 is prepared to verify event E4 with parameter S1 against policy

P2. Similarly, policies, P3 and P27, are prepared for tools, Tool2 and ToolN . Second, it

executes verification tools, Tool1, Tool2 and ToolN , to verify those policies (note that,

while Proactivizer can support different tools at the same time, integrating many tools

may inadvertently increase the system’s complexity, which is why this feature is op-

tional). Third, after the verification, Proactivizer interprets their outputs, and conclude

that none of these policies will be breached, if the E4 event with the S1 parameter really

occurs. Therefore, we add the parameters, S1, to the watchlist of the event E4. Similarly,

7

we can show that for another parameter set, S3, the event E4 violates the policy P3 and

hence, S3 is not added to the watchlist; which is further illustrated in Example 3.

S1hk12hk2kjhq

1h1k2jh1khk4hk14

h01028108120801

280180282108

Input Preparation

E4

Watchlist Preparation

Policy | Result

P2 compliant

P3 compliant

P2! co"pliant

...

Policies | CE

P1 | E#

P2 | E4

P$ | E4,E#

...

P2% & E4

1. verify 'E*, S1, P2+ Tool1

2. verify 'E*, S1, P,+ Tool2

,. verify 'E*, S1, P2-+ ToolN

Affected Policies

Tool2

Tool1

ToolN

Verification

Fig. 6: An example of different steps of our proactive verification (where the predicted

critical event (CE) is E4 and current event parameter is S1)

Figure 7 shows the major steps of our proactive verification. The figure also indi-

cates the common steps for all verification tools that are integrated with the Proactivizer

framework, and tool-specific unique steps.

Intercept Runtime Events Identify Likely Future Events

Predict Future Events

Identify Affected Policies Define All Possible Changes

Anticipate the Scope of Future Events

Prepare Inputs for each Tool Execute Verification Tools

Conduct Proactive Verification

Interpret Tool Outputs

Intercept Runtime Events Identify Likely Future Events

Prepare Watchlists

Predictive Model Cloud Configurations Security Policies

Co..on

/teps

Co11on

Steps

Tool2Specific

/teps

Watchlists

Fig. 7: The major steps of the proactive verification by the Proactivizer framework

Common Verification Steps. We elaborate on three major common steps as follows.

– Predicting Future Events. This step is to predict the future events from the current

event using the predictive model (obtained in Section 2). To this end, Proactivizer

first intercepts each event request sent to the cloud platform and obtains the detailed

information (e.g., event type and its parameters). Second, it obtains the prediction

scores (as discussed in Section 3.2) for each critical event from the intercepted event

type. Third, it shortlists the predicted events which have greater prediction scores than

the threshold (which is set by the users of Proactivizer).

– Anticipating the Scope of Future Events. This step is to anticipate the possible changes

related to the predicted future event, as the event specifics (such as exact parameter

values) are unknown at this point of time. To this end, Proactivizer first identifies the

affected policies by that event from the list of security policies and corresponding

critical events (as shown in Figure 6). Second, it anticipates the possible parameters

for the future events by considering all available values of those parameters from the

8

current cloud configurations. These anticipated information will be later used by the

tool-specific steps in Section 4.

– Preparing Watchlists. After the tool-specific steps (in Section 4), Proactivizer prepares

the watchlist(s) from the verification results. Specifically, Proactivizer identifies the

set of parameters for which a security violation is reported by any of the tools, and,

includes the remaining anticipated parameters in the watchlist of the predicted event.

The tool-specific verification steps will be discussed in Section 4.

3.4 Runtime Security Enforcement

This step enforces security policies using the watchlists (obtained from the previous

step) at runtime as follows. a) It holds the event execution whenever a critical event

has occurred. b) It checks the parameters of the current event against its watchlists.

c) Proactivizer only allows (or recommends to pass) the execution of the current event,

if the parameters are in the watchlists. Otherwise, it denies the request.

Runtime Enforcement

Decision: Deny E4

S1hk1 2hk2h3 1k j4h kjhq1 4k j1

h1k2jh1k h1 2j4h k2j4h1k4h1 2

jh4 1k hj1 24 jh1k4h k1 4h1k4h2

4 44 4 8k2j3 98 8 21 9 0 10 2 81 0 81

2 08 0 12 8 0 18 0 28 0 82 1 08

Critical Event

Identification

E1

E2 E3

E4
E5 E6

f2f1

f5 f4
f3

Runtime Decision

P2 compliant

P3 breached

P27 compliant

S1

S4

S9

S11

Watchlist

Check

E4

k14h1k4h244

448k2j398821

90102810812

08012801

h23jkh4kjhkj2

b3kbmn2bm2

nb321hjbj32h

9daaa

1. E4(S3)

Cloud

Management

Platform

2. hold E4 execution

3. Deny E4 execution

Fig. 8: An example of different steps of the Proactivizer runtime security enforcement

Example 3 Figure 8 shows an example of this step; where Proactivizer intercepts the

critical event E4 with the parameter set, S3. First, Proactivizer identifies that E4 is a

critical event, and hence, requests the cloud platform to hold the execution of the E4

event request. Second, it searches S3 in the watchlist of E4. The parameter set, S3, is

not found in the watchlist, specifically, because S3 breached policy P3 in the previous

step in Example 2. Finally, Proactivizer denies the current event request E4.

4 Proactivizer Applications

This section details the Proactivizer integration steps for three candidate applications.

4.1 Datalog-Based Security Verification

This section first provides the background on a Datalog-based security verification tool,

namely, Congress [30], and then describes how we integrate Congress with Proactivizer.

Background. Congress [30] is an OpenStack [31] project to verify security policies

for cloud infrastructures. Congress leverages declarative logical programming language

(a.k.a. Datalog). We discuss its integration with Proactivizer as follows.

The details of Congress Integration. The major steps of this integration are to prepare

Congress inputs and interpret its verification results. To prepare its inputs, our one-

time efforts are to express policies in the Datalog format and identify required data

9

and their sources for each security policy. Then, the runtime efforts are to populate

the policy with the current event parameters and execute Congress with the prepared

inputs. After Congress finishes the verification, Proactivizer analyzes Congress outputs

to identify the parameter values for which a policy will be breached before preparing

the watchlist (as in Section 3.3). We further show the Congress integration using an

example as follows.

Example 4 In this example, we consider a security policy (provided by Congress [30]),

which states that “every network connected to a VM must be either public or private

and owned by someone in the same group as the VM owner”. For this policy, the add

network event is one of the critical events, and we store the allowed network ID for

each VM on the watchlist. We first express this policy as in Congress’s format:

error(vm) : −nova : instance(vm),nova : network(vm,network), (1)

notneutron : public(network),nova : owner(vm,vmowner),

neutron : owner(network,netowner),notsame_group(vmowner,netowner)

same_group(x,y) : −group(x,g),group(y,g)

group(x,g) : −keystone : group(x,g)

group(x,g) : −ad : group(x,g)

For the explanation of this expression, we refer the readers to [30]. The data sources

are the configurations from different services (e.g., Nova and Neutron) of OpenStack.

At runtime, the common steps in Section 3.3 provides the predicted event add

network, the parameter of current event, VM1, and all the network IDs, N1, N2 and

N3, for that tenant. As a part of the Congress-specific effort, Proactivizer updates the

nova:network table on the simulated environment of Congress as if these three net-

works are added to the VM1 VM, and executes Congress to verify the above-mentioned

policy. The result of Congress is formatted as error(VM1,N3), which indicates that

adding network N3 to VM VM1 will violate the policy. Using this interpretation, the

final common step (in Section 3.3) prepares the watchlist.

4.2 SAT-Based Security Verification

This section first provides the background on a satisfiability (SAT) solver, namely,

Sugar [38], and then describes how we integrate Sugar with Proactivizer.

Background. Sugar [38] is a SAT solver, which expresses policies as a constraint sat-

isfaction problem (CSP). If all constraints are satisfied, then Sugar returns SAT (which

indicates a policy violation). We discuss its integration with Proactivizer as follows.

The details of Sugar Integration. To prepare Sugar inputs, our one-time efforts are

to express policies in the CSP format and identify the required data and their sources.

Then, our runtime efforts are to populate that CSP policy with both current and pre-

dicted event parameters and execute Sugar to verify that policy. After the verification,

Proactivizer interprets Sugar’s outputs to prepare the watchlist to avoid any policy vio-

lation. We further show the Congress integration using an example as follows.

Example 5 For this example, we consider a security policy (provided by [26]), which
states that “a user must not hold any role from another domain” (where domain is a

10

collection of tenants). Here, the grant role event is a critical event, and the allowed
roles are in the watchlist for each domain. Proactivizer first expresses the policy as:

(and BelongsToD(u,d) AuthorizedR(u,t,r) (2)

(not TenantRoleDom(t,r,d)))

Here, u is the user, d is the domain, t is the tenant and r is the role. For the explana-

tion of each constraint, we refer the readers to [26]. For this policy, we collect user, role,

tenant and domain, from the identity management service (Keystone) of OpenStack.

At runtime, similarly as in Example 4, the predicted event is grant role, the cur-

rent event parameter is u1 user ID and possible roles are r1, r2 and r3. Then, Proac-

tivizer instantiates the policy in Equation (2) with each user-role pair, e.g., (u1, r1), (u1,

r2) and (u1, r3), and executes Sugar to verify the policy. The result of Sugar provides

the pair, (u1, r3), for which it gets a SAT result; which means that granting role r3 to

user u1 will violate the policy, and hence, role r3 will not be added to the watchlist.

4.3 Access Control Policy Verification

This section first provides the background on an access control tool, namely, Patron [20],

and then describes how we integrate Patron with Proactivizer.

Background. Patron [20] is an access control policy verification solution for clouds.

To that end, Patron verifies each runtime event request against a list of access control

policies defined by tenants. We discuss its integration with Proactivizer as follows.

The details of Patron Integration. At runtime, Proactivizer expresses the predicted

event in Patron’s format, which includes event type, caller of an event and requested

resources, and executes Patron to verify that event. After Patron’s verification, Proac-

tivizer checks Patron’s decision to prepare the watchlist. We further explain this step

using an example as follows.

Example 6 In this example, we consider a security policy stating that “a tenant ad-

min only can add security group rules to the VMs of the same tenant”. At runtime, the

predicted event is add security group rule and the caller of the current event is

tenant1-admin. Proactivizer prepares the Patron inputs as: {input 1: {add security

group rule, user: tenant1-admin, VM1} and input 2: {add security group

rule, user: tenant1-admin, VM2}}. The results of Patron are {input 1: allow} and

{input 2: deny}, respectively. Therefore, it only adds the VM1 to the watchlist.

5 Implementation

This section presents the high-level architecture of Proactivizer, and then details its

integration into OpenStack [31], a popular cloud platform.

Architecture. There are five major components in our solution (Figure 9). i) The data

collector collects logs and configurations from the cloud platform. ii) The predictive

model builder is mainly to build the predictive model using Bayesian network and

time-series. iii) The interceptor interacts with the cloud platform at runtime. iv) The

proactive verifier mainly provides the interface to plug various verification tools and

11

Predictive Model Builder

Cloud

I

n

t

e

r

c

e

p

t

o

r

Log

Processor

Probabilistic

Model Learner

(e.g., Bayesian

Network)

Time Series

Model Analyzer

(e.g., ARMAX)

Predictive Models

Proactive Verifier

Watchlists

Interface to

Applications

Data

Collector

Logs

Config.

Config.

Event

Decision

Event

Decision

Veri. Results

Req.

Res.

Applications

(e.g., Datalog, SAT

and Access Control)

C

a

c

h

e

Watchlist

Builder

Policy Enforcement Module

Proactive

Manager

Watchlist

Verifier

Proactive Req.

Fig. 9: A high-level architecture of our solution

builds watchlists. v) The policy enforcement module enforces the runtime decision on

the cloud platform. Algorithm 1 shows the functionalities of these modules.

Implementation Details. In the predictive model builder, to process raw logs, we first

use Logstash [10], a data processing engine, and then utilize our own scripts to further

obtain event sequences and their corresponding frequency and intervals. The resulted set

of sequences is the input dataset to a Python Bayesian Network toolbox1. Afterwards,

the obtained Bayesian networks are provided to a time-series predictor, ARMAX [14],

which is a widely used method in prediction of stochastic processes in various fields.

Algorithm 1: Proactivize (CloudOS, Policies, Tools)

1: procedure BUILDPREDICTIVEMODEL(Logs)

2: for each timePeriod ti ∈ T do

3: Sequence[] = identifySequence(Logsti
)

4: bayesianNetwork = prepareBN(Sequence[])
5: predictiveModel = buildTimeSeriesModel(bayesianNetwork, Sequence[].interval)

6: procedure INTERCEPTEVENT(interceptedEvent , Policies)

7: for each policy pi ∈ Policies do

8: if interceptedEvent ∈ Policy.critical-events then

9: decision = verifyWL(interceptedEvent)

10: return decision

11: else

12: manageProactive(interceptedEvent)

13: procedure VERIFYWL(critical-event)

14: if critical-event.params ∈ critical-events.WL then

15: decision= “allow”

16: else

17: decision= “deny”

18: procedure MANAGEPROACTIVE(interceptedEvent)

19: for each critical-event ci ∈ Policies.critical-events do

20: distance = measureDistance(predictiveModel, ci, interceptedEvent)

21: if distance = ci.threshold then

22: policy[]=affectPolicy(ci)

23: verifyProactive(ci , interceptedEvent.params, policy[])

24: procedure VERIFYPROACTIVE(critical-event, params, Policies)

25: for each policy pi ∈ Policies do

26: input = prepareInput (Tools, pi , critical-event, params)

27: result = interpretResult(verify (Tools, input))

1 https://pypi.org/project/pgmpy/

12

The interceptor is implemented as a middleware so that it intercepts each request

to the OpenStack services (similarly as in [37, 20]). The proactive verifier currently

integrates three candidate applications (Congress [30], Patron [20] and Sugar [38]) with

Proactivizer. The watchlists are mainly stored in a MySQL database. In addition, we

implement a cache as memory-mapped file system (mmap) in Python (similarly as in

[20]); this cache stores recent watchlist queries to accelerate the decision mechanisms.

6 Experiments

This section first explains our experimental settings, and then presents the results using

both synthetic and real data.

6.1 Experimental Settings

Our testbed cloud is based on OpenStack version Mitaka. There are one controller node

and up to 80 compute nodes, each has a dual-core CPU and 2GB memory with the

Ubuntu 16.04 server. Based on a recent survey [32] on OpenStack, we simulate an

environment with maximum 1,000 tenants and 100,000 VMs. There are four synthetic

datasets, DS1-DS4, where we vary the number of VMs from 10,000 to 100,000 and

number of tenants from 1,000 to 10,000, simultaneously. The synthetic dataset includes

over 4.5 millions records. We further utilize data collected from a real community cloud

hosted at one of the largest telecommunication vendors; which contains 1.6 GB text-

based logs with 128,264 relevant entries (and 400 uniques records after processing) for

the period of 500 days. We repeat each experiment at least 100 times.

6.2 Experimental Results

In the following, we present our experimental results.

Efficiency Improvement in Proactivizer Applications. The objective of the first set of

experiments is to demonstrate the efficiency improvement resulted from the Proactivizer

integration with different applications. Table 1 summarizes the response time of three

candidate applications (i.e., Congress [30] (a Datalog solution), Patron [20] (an access

control tool) and Sugar [38] (SAT solver)) before and after the integration with Proac-

tivizer for four different datasets (DS1-DS4) and four different policies (P1-P4). The re-

sponse time of those applications without the Proactivizer integrations results from five

seconds to 103 seconds. On the other hand, after the Proactivizer framework integra-

tion, the response time of these tools remains within nine milliseconds. In summary, our

framework significantly improves the response time of these tools (e.g., around 99.9%

reduction on average). Furthermore, in Figure 10, we compare the response time of in-

cremental implementations of both Sugar [26] (Inc-Sugar) and Patron [20] (Inc-Patron)

for different events with and without the integration of Proactivizer. Specifically, Fig-

ure 10(a) shows that the response time of Sugar has been reduced to around 8 ms from

200 ms as an effect of Proactivizer. Figure 10(b) shows the similar nature of response

time improvement in Patron. On average, Proactivizer reduces the response time of Inc-

Sugar and Inc-Patron by 93.74% and 94.64%, respectively. We further check the effect

13
Sugar [38] Patron [20] Congress [30]

Dataset Proactivizer P1 P2 P3 P1 P2 P2 P3 P4

DS1
without (in s) 5.3 6.6 96.5 12.3 60.1 20.1 27.2 30

with (in ms) 5.6 8.1 7.5 5.6 8.1 8.1 7.5 7.1

DS2
without (in s) 6.5 7.2 102.3 15.9 67.1 21.1 29.2 35

with (in ms) 5.8 8.2 7.8 5.8 8.2 8.2 7.8 7.4

DS3
without (in s) 9.4 10.5 109.5 21.9 75.3 25.4 31.9 35.7

with (in ms) 6.6 8.3 8.1 6.6 8.3 8.3 8.1 7.4

DS4
without (in s) 15.3 16.4 118.7 29.5 87.9 30 34.2 39.1

with (in ms) 6.8 8.3 8.2 6.8 8.3 8.3 8.2 7.4

Average Improvement (%) 99.93 99.97 99.96

Table 1: The response time before (in seconds) and after (in milliseconds) the inte-

gration of Proactivizer to Sugar (a SAT solver), Congress (a Datalog-based tool), and

Patron (an access control tool) for the runtime security enforcement of different policies

(P1, P2, P3 and P4) for different datasets, DS1-DS4. Here, P1: Common Ownership,

P2: Minimum Exposure, P3: No Cross-Tenant Port and P4: No Bypass policies

of our cache implementation, and observe that the response time can be reduced to even

less than one millisecond (which is shown in Appendix B for the space constraint).

E1 E2 E3 E4
Events

0

50

100

150

200

250

T
im

e
(m

s)

Inc-Sugar (P1)
Proactivizer (P1)

Inc-Sugar (P2)
Proactivizer (P2)

E5 E6 E7 E8
Events

0

100

200
T

im
e

(m
s)

Inc-Patron (P3)
Proactivizer (P3)

Inc-Patron (P4)
Proactivizer (P4)

(a) Sugar (SAT Solver) (b) Patron (Access Control Tool)
Fig. 10: The response time (in milliseconds) before and after the integration of Proac-

tivizer for verifying (a) the Common Ownership (P1) and Minimum Exposure (P2) poli-

cies by Inc-Sugar (using SAT) and (b) the No Cross-Tenant Port (P3) and No Bypass

(P4) policies by Inc-Patron (using access control) for different events and our largest

dataset. Here, E1: grant role, E2: delete role, E3: delete user, E4: delete tenant, E5:

create VM, E6: start VM, E7: add security group rule and E8: delete security group rule

Effectiveness of our Predictive Model. The second set of experiments is to show the

effectiveness of our predictive model in terms of prediction match/error and fitting to the

real observation. Figure 11 shows a comparison between our predictive model (based

on the ARMAX function) and the state-of-art dependency model (based on Bayesian

network (BN)) [24] for different threshold values. Here, the prediction match rate refers

to the percentage of time proactive verification results are useful, and the prediction

error rate is its inverse. Specifically, Figure 11(a) shows that our model ensures the best

response time on average 85.8% of the time. In the best case, it can reach up to 93%

of prediction match with selective threshold values. Figure 11(b) shows the superior

fitting capability of ARMAX over BN; where we train the ARMAX model for 24 hours

and the resulted model is used in prediction for the next 24 hours. As illustrated in the

magnified window, both measurements in BN (dashed yellow lines) are lagging behind

the real dataset (in blue). On the other hand, our trained ARMAX model (in red) can

predict the time series more accurately (85% fit). These results strongly support the

effectiveness of our ARMAX model.

14

4 8 12 16 20 24
Time of day(h)

0

100

200

300

400

500

600

of

 E
ve

nt
s

One Cycle Prediction Using ARMAX and LeaPS

6:10:00 6:11:00 6:12:00
275

300

325

Real data ARMAX data:85.8% BN data:10.2%

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Probability Threshold

 (a)

0
10
20
30
40
50
60
70
80
90

100

Pr
ed

ic
tio

n
M

at
ch

/E
rr

or
 (

%
)

 ARMAX:M BN:M ARMAX:Er BN:Er

(b)

Fitting with real data

Fig. 11: Comparison between our predictive model using ARMAX and state-of-art de-

pendency model (based on Bayesian network (BN)) [24] in terms of (a) the percentage

of prediction match(M)/error(Er) (b) the percentage of fitting with the real data

Experiments with Real Cloud. We conduct similar experiments on the real data. Due

to the significantly smaller number of observations (i.e., 400 unique records), the AR-

MAX model shows less superiority (up to 65%) over Bayesian network and in few

cases is inferior. The real effectiveness of our prediction model is shown through the

relatively larger datasets (in Figure 11).

Probability Threshold 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

ARMAX Prediction Match (%) 97.36 96.5 96.5 88.6 82.45 82.4 73.7 68.4 66.6

Bayesian Network Prediction Match (%) 65 65.8 65.8 65.8 65.78 65.8 65.8 65.8 65.8

Improvement Ratio (%) 48 46.6 46.6 65.8 34.6 25.3 12 4 1.3

ARMAX Prediction Error (%) 80.6 77.41 64.5 54.8 42 42 32.2 25.8 25.8

Bayesian Network Prediction Error (%) 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2

Improvement Ratio (%) -8.7 -4.3 13 26 43.5 56.5 65.2 65.2 78.2

Table 2: Effectiveness of ARMAX vs. Bayesian network for real data (with 400 records)

Overall these results show that the response time with our framework can be less

than one millisecond in the best case (with cache), and in the worst case (for an in-

correct prediction), Proactivizer will have no effect on those applications. However,

for most cases (around 85.8% time), Proactivizer can keep the response time of these

applications within nine milliseconds.

7 Discussion

Additional Efforts to Add a New Verification Tool. Proactivizer is a framework to

plug different verification tools. Therefore, we design the Proactivizer framework in a

manner that most steps remain tool-agnostic (as shown in Section 3.3). As a result, to

add a new tool with Proactivizer, the main efforts are to prepare the inputs specific to

that tool and interpret its results (as shown in Section 4).

Choosing the Value of the Threshold. As described in Section 3 and evaluated in

Section 6, our solution schedules the computation based on a threshold probability. As

shown in Figure 11, lower values of threshold result in better prediction match. How-

ever, the prediction error also increases in such cases. Therefore, an optimal threshold

value has to be chosen based on the tenant’s need and experiences.

Reliance on the List of Critical Events. Like other existing solutions (e.g.,

Congress [30] and Weatherman [6]), our solution currently relies on manual identifica-

tion of a list of critical events as inputs. However, our preliminary study shows that this

identification process can be at least semi-automated by adopting a feedback module,

15

which progressively can update and complete this list leveraging retroactive auditing

tools (e.g., [22, 25]). We report the detailed results of the study in our future work.

Choice of Prediction Function. Proactivizer leverages the predictive model to proac-

tively trigger those verification tools. Therefore, the accuracy of our prediction function

might be critical in achieving the best performance of Proactivizer. In this paper, we

explore Bayesian network and ARMAX time series function and show the superiority

of ARMAX function for our purpose (through experimental results in Section 6).

Supported Security Policies. Proactivizer is a general framework in which various

verification tools can be plugged to verify a wide range of security policies. Therefore,

potentially Proactivizer could support a wide range of security policies. To demonstrate

this generality, we have so far integrated three verification tools with three totally differ-

ent policy languages and specifications. In the near future, we intend to extend applying

Proactivizer beyond the cloud environment, such as, in SDN and IoT.

Adapting to Other Cloud Platforms. Even though our current implementation is for

OpenStack, the Proactivizer design is platform-agnostic. Therefore, Proactivizer can be

adapted to other cloud platforms (e.g., Amazon EC2 [2] and Google GCP [12]) with a

one-time effort for implementing a platform-specific interface. To this end, we provide

a concrete guideline to adapt Proactivizer for other cloud platforms in Appendix A.

8 Related Work

Table 3 summarizes the comparison between existing works and Proactivizer. The first

and second columns list existing works and their verification methods. The next three

columns indicate different cloud layers, such as user-level, virtual infrastructure at the

tenant level (T) and virtual network at the cloud service provider (CSP) level. The next

three columns compare these works based on the adopted approaches. The next columns

compare them according to different features, i.e., runtime enforcement capability, con-

sidering verification tools as blackboxes, serving as a general-purpose solution, sup-

porting expressive policy languages and offering automated inputs. Note that the (◦)

symbol is for the Run. Enforcement column indicates that the corresponding work of-

fers runtime enforcement with significant delay, and an (N/A) in the Blackbox column

means that the corresponding solution is not utilizing any so-called verification tool.

In summary, Proactivizer differs from the existing works as follows. Firstly, Proac-

tivizer is the first proactive framework, which leverages existing tools as a blackbox

and transforms them into efficient solutions for runtime security enforcement. Secondly,

Proactivizer can potentially support a wide range of security policies due to its inherited

expressiveness from the integrated tools, and serve as a general-purpose framework.

Retroactive and Intercept-and-Check Approach. Unlike our work, retroactive veri-

fication approach (e.g., [19, 22, 25, 40, 41, 39, 8]) can detect violations only after they

occur, which may expose the system to high risks. Existing intercept-and-check ap-

proaches (e.g., [6, 30, 20, 26]) perform major verification tasks while holding the event

instances blocked. As a result, these works tend to cause significant delay to the user

requests; e.g., Weatherman [6] reports a four-minute delay to verify a mid-sized cloud.

In contrast, our framework transforms these intercept-and-check approaches into an

16
Proposals Methods

Layers Approaches Features

U
se

r-
le

v
el

V
ir

tu
al

In
fr

.(
T

)

V
ir

tu
al

N
et

.
(C

S
P

)

R
et

ro
ac

ti
v
e

In
te

rc
ep

t-
an

d
-C

h
ec

k

P
ro

ac
ti

v
e

R
u
n
.
E

n
fo

rc
em

en
t

B
la

ck
b
o
x

G
en

er
al

P
u
rp

o
se

E
x
p
re

ss
iv

e

A
u
to

m
at

ed

Patron [20] Access Control • - - - • - ◦ N/A - - •
Majumdar et al. [26] SAT Solver • - - - • - - • - • •

Madi et al. [21] SAT Solver - • • • - - - • - • •
Weatherman (V1) [6] Graph-theoretic - • - - • - ◦ - - • •
Weatherman (V2) [6] Graph-theoretic - • - - - • • - - • -

Congress (V1) [30] Datalog • • • - • - ◦ - - • •
Congress (V2) [30] Datalog • • • - - • • - - • -

NoD [19] Datalog - - • • - - - • - • •
LeaPS [24] Custom + Bayesian • • • - - • • N/A - - •

Proactivizer - • • • - - • • • • • •

Table 3: Comparing existing works with Proactivizer. The symbols (•), (-) and N/A

mean supported, not supported, and not applicable, respectively. Note that, symbol ◦ is

used for the solutions which support runtime enforcement with significant delay.

efficient solution for runtime security enforcement (as reported in Section 6). There

exist other intercept-and-check solutions (e.g., TopoGuard [15], TopoGuard+ [36] and

IoTGuard [7]) for SDN and IoT environments. These works can potentially be the ap-

plications of the Proactivizer framework to further improve their response time.

Proactive Approach. There exist few proactive works (e.g., [6, 30, 24, 23, 44]) for

clouds. Weatherman [6] and Congress [30] verify security policies on a future change

plan using the graph-based and Datalog-based model proposed in [5, 4], respectively.

Unlike our automated predictive model, those works rely on manual inputs of future

plan. PVSC [23] proactively verifies security compliance by utilizing the static patterns

in dependency models. PVSC [23] and LeaPS [24] are both customized for specific

security policies and environment. Whereas, Proactivizer is designed to support a wide-

range of security policies in diverse environments. In addition, Foley et al. [11] propose

an algebra for anomaly-free firewall policies for OpenStack. Many state-based formal

models (e.g., [35, 17, 18, 9]) are proposed for program monitoring. Our work differs

from them as we target in providing a generic proactive framework for plugging various

verification tools, and these works potentially can be the applications of Proactivizer.

9 Conclusion

In this paper, we proposed Proactivizer, a generic proactive framework to transform ex-

isting verification tools into efficient solutions for runtime security enforcement. To this

end, we leveraged the existing tools as blackboxes and proactively triggered the verifi-

cation process based on the dependency relationships among the events. As a proof of

concept, we applied Proactivizer to several existing verification tools (e.g., SAT solver,

Datalog-based tool and access control tool) and integrated it with OpenStack, a widely

used cloud platform. Through our extensive experiments in both simulated and real

cloud environments, we demonstrated the effectiveness of our framework in reducing

response time significantly (e.g., within nine milliseconds for 85.8% of the time). As

future work, we intend to conduct a cost analysis of our proactive verification for differ-

ent threshold values to help users in choosing more appropriate threshold value. Also,

we plan to explore other time series functions to identify the best option.

17

References

1. J. Aikat, A. Akella, J. S. Chase, A. Juels, M. Reiter, T. Ristenpart, V. Sekar, and M. Swift.

Rethinking security in the era of cloud computing. IEEE Security & Privacy, 15(3), 2017.

2. Amazon. Amazon virtual private cloud. Available at: https://aws.amazon.com/vpc, last

accessed on: February 14, 2018.

3. M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report, Citeseer,

1997.

4. S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated information flow analysis

of virtualized infrastructures. In European Symposium on Research in Computer Security

(ESORICS), pages 392–415. Springer, 2011.

5. S. Bleikertz, C. Vogel, and T. Groß. Cloud Radar: near real-time detection of security failures

in dynamic virtualized infrastructures. In Proceedings of the 30th annual computer security

applications conference (ACSAC), pages 26–35. ACM, 2014.

6. S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of changes in

virtualized infrastructures. In Proceedings of the 31st annual computer security applications

conference (ACSAC), pages 51–60. ACM, 2015.

7. Z. B. Celik, G. Tan, and P. McDaniel. IoTGuard: Dynamic enforcement of security and

safety policy in commodity IoT. In Proceedings of 2019 Annual Network and Distributed

System Security Symposium (NDSS’19), February 2019.

8. F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and N. Clarke. Validating cloud

infrastructure changes by cloud audits. In Eighth World Congress on Services (SERVICES),

pages 377–384. IEEE, 2012.

9. E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with mandatory

results automata. International Journal of Information Security, 14(1):47–60, 2015.

10. Elasticsearch. Logstash. Available at: https://www.elastic.co/products/logstash,

last accessed on: February 14, 2018.

11. S. N. Foley and U. Neville. A firewall algebra for OpenStack. In Conference on Communi-

cations and Network Security (CNS), pages 541–549. IEEE, 2015.

12. Google. Google cloud platform. Available at: https://cloud.google.com, last accessed

on: February 14, 2018.

13. H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and verification of ipsec and vpn security

policies. In 13th IEEE International Conference on Network Protocols (ICNP’05), pages

10–pp. IEEE, 2005.

14. J. D. Hamilton. Time series analysis. Economic Theory. II, Princeton University Press, USA,

pages 625–630, 1995.

15. S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility in software-defined

networks: New attacks and countermeasures. In Proceedings of 2015 Annual Network and

Distributed System Security Symposium (NDSS’15), February 2015.

16. M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. Mycloud: supporting user-configured privacy

protection in cloud computing. In Proceedings of the 29th Annual Computer Security Appli-

cations Conference (ACSAC), pages 59–68. ACM, 2013.

17. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM

Transactions on Information and System Security (TISSEC), 12(3):19, 2009.

18. J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In European Sympo-

sium on Research in Computer Security (ESORICS), pages 87–100. Springer, 2010.

19. N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese. Checking beliefs in

dynamic networks. In 12th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI’15), pages 499–512, 2015.

18

20. Y. Luo, W. Luo, T. Puyang, Q. Shen, A. Ruan, and Z. Wu. OpenStack security modules: A

least-invasive access control framework for the cloud. In IEEE 9th International Conference

on Cloud Computing (CLOUD), 2016.

21. T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi, L. Wang,

and M. Debbabi. ISOTOP: Auditing virtual networks isolation across cloud layers in Open-

Stack. ACM Transactions on Privacy and Security (TOPS), 22(1):1, 2018.

22. T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang. Auditing secu-

rity compliance of the virtualized infrastructure in the cloud: Application to openstack. In

Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy

(CODASPY), pages 195–206. ACM, 2016.

23. S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang, and

M. Debbabi. Proactive verification of security compliance for clouds through pre-

computation: Application to openstack. In European Symposium on Research in Computer

Security (ESORICS), pages 47–66. Springer, 2016.

24. S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang, and

M. Debbabi. Leaps: Learning-based proactive security auditing for clouds. In European

Symposium on Research in Computer Security (ESORICS), pages 265–285. Springer, 2017.

25. S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Debbabi. Se-

curity compliance auditing of identity and access management in the cloud: application to

openstack. In 7th International Conference on Cloud Computing Technology and Science

(CloudCom), pages 58–65. IEEE, 2015.

26. S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Debbabi. User-

level runtime security auditing for the cloud. IEEE Transactions on Information Forensics

and Security, 13(5):1185–1199, 2018.

27. S. Majumdar, A. Tabiban, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi,

L. Wang, and M. Debbabi. Learning probabilistic dependencies among events for proac-

tive security auditing in clouds. Journal of Computer Security, 27(2):165–202, 2019.

28. Microsoft. Microsoft Azure virtual network. Available at: https://azure.microsoft.

com, last accessed on: February 14, 2018.

29. N. Nitta, Y. Takata, and H. Seki. An efficient security verification method for programs with

stack inspection. In Proceedings of the 8th ACM conference on Computer and Communica-

tions Security, pages 68–77. ACM, 2001.

30. OpenStack. OpenStack Congress, 2015. Available at: https://wiki.openstack.org/

wiki/Congress, last accessed on: February 14, 2018.

31. OpenStack. OpenStack open source cloud computing software, 2015. Available at: http:

//www.openstack.org, last accessed on: February 14, 2018.

32. OpenStack. OpenStack user survey, 2018. Available at: https://www.openstack.org/

user-survey/2018-user-survey-report/, last accessed on: Apr 24, 2019.

33. K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud. IEEE Internet

Computing, 16(1):69–73, 2012.

34. N. Schear, P. T. Cable II, T. M. Moyer, B. Richard, and R. Rudd. Bootstrapping and maintain-

ing trust in the cloud. In Proceedings of the 32nd Annual Conference on Computer Security

Applications. ACM, 2016.

35. F. B. Schneider. Enforceable security policies. Transactions on Information and System

Security (TISSEC), 3(1):30–50, 2000.

36. R. Skowyra, L. Xu, G. Gu, T. Hobson, V. Dedhia, J. Landry, and H. Okhravi. Effective

topology tampering attacks and defenses in software-defined networks. In Proceedings of

the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN’18), June 2018.

19

37. A. Tabiban, S. Majumdar, L. Wang, and M. Debbabi. Permon: An openstack middleware for

runtime security policy enforcement in clouds. In Proceedings of the 4th IEEE Workshop on

Security and Privacy in the Cloud (SPC 2018), June 2018.

38. N. Tamura and M. Banbara. Sugar: A CSP to SAT translator based on order encoding. In

Proceedings of the Second International CSP Solver Competition, pages 65–69, 2008.

39. K. W. Ullah, A. S. Ahmed, and J. Ylitalo. Towards building an automated security compli-

ance tool for the cloud. In 12th International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 1587–1593. IEEE, 2013.

40. C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for

secure cloud storage. IEEE transactions on computers, 62(2):362–375, 2013.

41. Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu. Identity-based data outsourcing

with comprehensive auditing in clouds. IEEE Transactions on Information Forensics and

Security, 12(4):940–952, 2017.

42. D. C. Wardell, R. F. Mills, G. L. Peterson, and M. E. Oxley. A method for revealing and

addressing security vulnerabilities in cyber-physical systems by modeling malicious agent

interactions with formal verification. Procedia computer science, 95:24–31, 2016.

43. WSGI. Middleware and libraries for WSGI, 2016. Available at: http://wsgi.

readthedocs.io/en/latest/libraries.html, last accessed on: February 15, 2018.

44. S. S. Yau, A. B. Buduru, and V. Nagaraja. Protecting critical cloud infrastructures with

predictive capability. In 8th International Conference on Cloud Computing (CLOUD), pages

1119–1124. IEEE, 2015.

A Guideline to Adapt to Other Cloud Platforms

Our solution interacts with the cloud platform (e.g., while collecting logs and inter-

cepting runtime events) through two modules: pre-processor and interceptor. These two

modules require to interpret implementation- specific event instances, and intercept run-

time events. First, to interpret platform-specific event instances to generic event types,

we currently maintain a mapping of the APIs from different platforms. Table 4 enlists

some examples of such mappings. Second, the interception mechanism may require to

be implemented for each cloud platform. In OpenStack, we leverage WSGI middle-

ware to intercept and enforce the proactive auditing results so that compliance can be

preserved. Through our preliminary study, we identified that almost all major platforms

provide an option to intercept cloud events. In Amazon using AWS Lambda functions,

developers can write their own code to intercept and monitor events. Google GCP in-

troduces GCP Metrics to configure charting or alerting different critical situations. Our

understanding is that our solution can be integrated to GCP as one of the metrics sim-

ilarly as the dos_intercept_count metric, which intends to prevent DoS attacks. The

Azure Event Grid is an event managing service from Azure to monitor and control

event routing which is quite similar as our interception mechanism. Therefore, we be-

lieve that our solution can be an extension of the Azure Event Grid to proactively audit

cloud events. Tables 4 and 5 represent the necessary mapping to be used for extending

our approach from OpenStack to other cloud platforms. The rest modules of our solu-

tion deal with the platform-independent data, and hence, the next steps in our solution

are platform-agnostic.

20

Generic Event Type OpenStack [31] Amazon EC2-VPC [2] Google GCP [12] Microsoft Azure [28]

create VM POST /servers aws opsworks –region
create-instance

gcloud compute
instances create

az vm create l

delete VM DELETE /servers aws opsworks –region
delete-instance
–instance-id

gcloud compute
instances delete

az vm delete

update VM PUT /servers aws opsworks –region
update-instance
–instance-id

gcloud compute
instances add-tags

az vm update

create security group POST /v2.0/security- groups aws ec2
create-security-group

N/A az network nsg create

delete security group DELETE /v2.0/security-
groups/{security_ group_id}

aws ec2 delete-security
-group –group-name

N/A az network nsg delete

Table 4: Mapping event APIs from different cloud platforms to generic event types

Cloud Platform Interception Support

OpenStack WSGI Middleware [43]

Amazon EC2-VPC AWS Lambda Function [2]

Google GCP GCP Metrics [12]

Microsoft Azure Azure Event Grid [28]

Table 5: Interception supports to adopt our solution in major cloud platforms

B Performance of the Cache Implementation

Figure 12 illustrates the response time in case there is a cache hit (when runtime param-

eters is found in the implemented cache memory) and the additional delay for a cache

miss (when requested parameters is not in the cache memory) for Patron and Congress,

respectively. In Figure 12(a), for different sizes of cache, we observe a quasi constant

response time (which is less than one millisecond) for Patron with our framework, and

an additional delay for a cache miss of up to four milliseconds. Figure 12(b) shows

the results of similar experiment for Congress with our framework; where a cache hit

causes further improvement on the response time, but a cache miss may cause up to 137

milliseconds of delay. Overall the results show the response time can be even less than

one millisecond at the best case, and at the worst case (when the prediction is incorrect),

Proactivizer will have no effect on those applications. However, for most cases (around

85.5% time), Proactivizer can keep their response time within ten milliseconds .

0 20K 40K
of VM

0

50

100

150

T
im

e
(m

s)

16MB 32MB 64MB 128MB
Cache Size

0

2

4

T
im

e
(m

s)

Delay for a Cache Miss Response Time with a Cache Hit

(b) Congress (Datalog Solver)(a) Patron (Access Control Tool)

Fig. 12: The average response time for a cache hit and delay for a cache miss for (a)

Patron (access control tool) and (b) Congress (Datalog solver), while varying the size

of the cache and number of VMs, respectively

