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Abstract—Network Functions Virtualization (NFV) is a popular solution for providing multi-tenant network services on top of existing
cloud infrastructures in an agile and cost-effective manner. However, as NFV employs multiple levels of virtualization, it also introduces
novel security challenges, such as cloud-level security breaches that are invisible to NFV-level tenants. Towards verifying the security of
NFV across all the levels (a.k.a. cross-level security verification), existing solutions are mostly insufficient, as each such solution
typically only focuses on one specific level (e.g., cloud, SDN, or SFC), and verifying every level separately would be expensive or even
infeasible. In this paper, we propose an efficient and practical system, NFVGuard+, for cross-level security verification for NFV.
Particularly, the efficiency of NFVGuard+ is achieved by first performing the costly security verification at one level, and then
extrapolating the verification result to other levels through conducting relatively lightweight consistency checks. Additionally, the
practicality of NFVGuard+ is ensured by automating the essential steps (e.g., identifying security properties, collecting verification data,
and conducting verification) based on a novel Entity-Relationship (ER) model of NFV stack, integrating the approach with
OpenStack/Tacker (a popular choice for an NFV deployment), and finally evaluating its effectiveness using both synthetic and real data.

Index Terms—NFV, Cross-level Verification, Security Verification, Topology Consistency, Tacker, OpenStack.
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1 INTRODUCTION
The adoption rate of NFV is increasing1 due to the many

benefits of virtualizing proprietary physical devices in the
network architecture, such as the capability for operators to
scale their network services on-demand, and the lower cost
of using existing cloud infrastructure. However, to attain
such benefits, NFV involves multiple levels of virtualiza-
tion and operates the managerial components at each level
autonomously [2]. As a ramification, this additional com-
plexity opens the door to potential inconsistencies among
different levels of the NFV stack, which can be exploited
to conduct stealthy attacks, e.g., “invisible” (to end users)
security breaches at lower levels of an NFV stack [3]. To
tackle such threats, verifying the security across different
levels of an NFV stack (a.k.a. cross-level security verifica-
tion) becomes essential.

To that end, most existing works (e.g., [4]–[18]) are insuf-
ficient as they typically focus on one particular level of the
NFV stack, such as service function chaining (SFC), instead
of verifying the entire NFV stack. Additionally, utilizing
those existing solutions to separately verify each level of
NFV would be expensive, or even infeasible (as doing so
would require translating given security properties to all
NFV levels, which is not always possible). On the other
hand, developing a new approach to cross-level verification
for NFV involves the following major challenges: (i) how
to determine the system entities and their relationships at
multiple levels in NFV to locate the possible data sources
for verification, (ii) how to instantiate the high-level security
requirements (e.g., network isolation) into specific system-
level security properties to enable automated verification in
NFV, and (iii) how to conduct the cross-level verification in
an efficient and accurate manner while handling the sheer

1. 92% of carriers have either deployed or plan to deploy network
functions virtualization soon [1]

size and multi-level of NFV. In the following, we further
highlight those challenges using a motivating example.

Motivating Example. The left side of Figure 1 shows a
simplified view of the NFV stack (Sec 2.1 provides more
background on NFV stack) of two tenants, Bob and Eve (as
indicated by the two dashed line boxes), which involve four
levels (L1-L4 as indicated by the shaded planes) and their
corresponding virtual and physical resources. We assume
that, by exploiting real-world vulnerabilities (e.g., CVE-
2024-1085 [19], CVE-2024-0193 [20], or CVE-2024-0646 [21])
in a specific way [3], a malicious tenant (Eve) could inject
a malicious virtual machine, Malicious VM, into Bob’s
network to secretly inspect his traffic at L3, without causing
any detectable changes in the upper levels. Knowing about
such potential threats, the provider is concerned with the
following question: “Are Bob’s and Eve’s virtual networks
properly isolated at all levels?”

The first column on the right side of the figure shows
the existing challenges in cross-level security verification
as follows. First, the mapping between the resources across
different levels of the NFV stack (which might be useful for
cross-level security verification) is unknown. Second, a na-
ive solution which separately conducts security verification
at each level of NFV through utilizing (multiple) existing
works (e.g., [11], [13], [15], [16]) is expensive or even infeas-
ible (e.g., its not always possible to re-define an L1 property
at L4 in a meaningful way). To address those challenges,
our two main ideas are illustrated in the next two columns
of the figure. Specifically, our first idea is to identify the
mapping between the resources in different levels of NFV
and automatically identify the corresponding consistency
properties (needed for the next idea). Our second idea is
to only verify every property at the level where its specified
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Figure 1: A motivating example illustrating the challenges of cross-level security verification in NFV and our ideas.

(e.g., L2 in this case), and then implicitly extend the result of
such verification to other levels by verifying the consistency
between adjacent levels.

To instantiate those ideas, we propose a security veri-
fication system, NFVGuard+, for the efficient and practical
cross-level security verification of NFV stack. NFVGuard+
leverages formal methods to model the audit data and
properties as a Constraint Satisfaction Problem (CSP) and
employs the Sugar solver [22] to verify compliance. To
facilitate this, we first create an Entity-Relationship (ER)
model to systematically capture NFV entities and their rela-
tionships. Next, we identify consistency properties from the
ER model and design an algorithm to automatically derive
them from the model. We then develop our cross-level se-
curity verification approach, utilizing the ER model for data
collection, processing, and formal verification. Finally, we
demonstrate the applicability of our solution by integrating
it into a real NFV testbed based on OpenStack/Tacker [23]
and evaluate its efficiency through experiments with both
real and synthetic data.

Security Capabilities of NFVGuard+. NFVGuard+ is de-
signed to ensure the configuration of NFV stack complies
with given security and consistency properties. Its results
can provide either formal proof for such security compli-
ance, or (in the case of non-compliance) counterexamples,
i.e., policy violations in the NFV configuration. Although
not specifically designed for attack detection, the policy viol-
ations identified by NFVGuard+ can potentially indicate the
presence of misconfigurations, vulnerability exploitations,
or other threats that have caused such policy violations, as
long as these leave some traces in the logs or configuration.
However, it is not designed to provide specific details about
the underlying vulnerabilities (which requires vulnerability
analysis) or attacks (which requires intrusion detection).
Finally, it cannot detect policy violations leaving no traces,
such as those caused by side-channel attacks or log tamper-
ing.

Comparison to Existing Solutions. In comparison to most
existing NFV security verification solutions (e.g. [4]–[18],
[24]), which primarily focus on a single level (mostly SFC),

NFVGuard+ has a different focus, i.e., ensuring the security
across all levels of the NFV stack. As we will demonstrate
later in Section 2.3, this cannot be easily achieved using ex-
isting single-level solutions due to some unique challenges.
Furthermore, although some approaches (e.g., [25], [26])
touch on the multilevel aspect of NFV, they do not formally
model the verification problem as we do, cannot provide the
same rigorous security proof provided by formal methods
[25], or focus on a narrow scope of attacks (e.g., through
VM placement optimization [26]). A detailed comparison is
provided in Table 5.

In summary, our main contributions are:

• As per our knowledge, this is the first cross-level
security verification system for NFV that supports
automated identification of the properties and their
data sources such that less human intervention
would be needed.

• We are also the first to build an Entity Relation-
ship (ER) model for NFV, which captures knowledge
about the system entities and their relationships
across different levels of the NFV stack. We provide
a concrete guideline on how to effectively identify
security properties utilizing the ER model. Those can
be potentially useful for developing other security
measures for NFV beyond security verification.

• We implement our solution and integrate it into a
real NFV testbed built using OpenStack/Tacker [23]
(a popular platform for deploying NFV [27]). Ad-
ditionally, we experimentally evaluate our solution
using both synthetic and real data (from one of the
largest telecommunications vendors), demonstrating
its efficiency and practicality (e.g., it took ∼2m to
verify a large dataset of 100K VMs and we show
that this time can be significantly reduced (to few
seconds) by conducting the verification in parallel
(more details are provided in Section 7)).

In the preliminary version of our work [28], we present
the basic concept of cross-level verification for the NFV
stack. This paper turns this concept into an efficient and
practical system with the following major extensions. First,
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we re-design our approach to support the automated identi-
fication of properties (Section 3). Second, we propose a new
Entity-Relationship (ER) model to capture NFV entities and
their relationships across different levels of the NFV stack
(Section 4.1). Third, we present a new approach for identi-
fying consistency properties from the ER model and design
an algorithm to automatically derive those properties from
the model (Section 4.2). Fourth, we devise a new system
that leverages our ER model for conducting each step of the
cross-level verification, and we provide a concrete guideline
for the user to utilize our ER model to efficiently identify
new security properties (Section 5). Finally, we implement
and integrate the system into our NFV testbed (Section 6)
and conduct new experiments to evaluate its performance
under different configuration scenarios (Section 7).

2 PRELIMINARIES

This section provides the preliminaries.

2.1 Background on NFV
NFV is a network architecture concept that virtualizes
various network functions, such as routers, firewalls, load
balancers, and intrusion detection systems (IDS) [29]. Figure
2 illustrates the multilevel NFV deployment model [3] (on
the right) with the mapping to a simplified view of the
ETSI NFV reference architecture [29] (on the left). The NFV
deployment model complements the ETSI NFV reference
architecture with deployment details found in multiple
open source platforms including Networking Automation
Platform (ONAP) [30], Tacker [31], OpenStack [23]. Specific-
ally, the deployment model depicts the NFV stack at four
abstraction levels: Service Orchestration (L1) (which supports
the specification, on-boarding, and lifecycle management
of network services. Also, it could optionally include the
SDN Orchestrator (SDNO) for the automated management
of network resources and services), Resource Management
(L2) (which supports the instantiation of network services
and the management of computing, storage, and network
resources), Virtual Infrastructure (L3) (which hosts the virtual
resources needed to support upper levels, and optionally
the SDN controller (SDN-C)), and Physical Infrastructure (L4)
(which includes all the physical resources).

2.2 Security Properties for NFV
Security properties of NFV define the desired security states
of the NFV deployment that are usually specified by the
tenants and/or providers. Very often, these properties are
inspired by security standards (e.g., ETSI [2] and ISO 27002
[32]) that outline fundamental security principles and re-
commendations for guiding the providers and for assisting
the tenants in assessing the overall security compliance
with the provider’s NFV infrastructure. For this purpose,
we conduct a study on the standards related to NFV (e.g.,
IETF-RFC7498 [33], and ETSI [2]), along with the standards
related to various components of an NFV stack, such as
cloud and SDN (e.g., ISO 27002 [32] and CCM [34]). Then we
extract a list of security properties (the list can be found in
the preliminary version of this work [28], which is omitted
here due to space limitation) from those standards and the
literature which can be used for the security verification
for NFV. Please note that while this list is not meant to
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Figure 2: The multilevel NFV model [3].

be comprehensive, it can be easily extended to encompass
additional security properties and even user-defined prop-
erties. Our approach can verify any security property as
long as its expressed using formal methods. However, in
this paper we focus on verifying the compliance of security
properties related to the static configuration of the virtu-
alized infrastructure, such as the proper configuration of
isolation mechanisms. Dynamic properties, such as those re-
lated to reachability and network forwarding functionality,
are beyond the scope of this paper and will be addressed
in future work. To add specificity to our discussions, we
provide a sample property, and subsequently, in Section 5,
we show its verification process.

Example 1 Virtual resources isolation (no common owner-
ship) property. Aims at verifying that each virtual resource is
exclusively owned by a single tenant unless specified by a user-
defined policy. Specifically, in this paper we aim to verify that
all VDUs composing a specific SFC at the management level are
owned by a unique tenant, namely the owner of the SFC service.

2.3 Challenges to Cross-Level Security Verification

Conducting security verification across different levels of
NFV-stack (a.k.a. cross-level security verification for NFV)
exhibits several unique challenges.
Identifying the NFV-Stack Entities and Their Relation-
ships. To develop a cross-level verification system and
identify the necessary input data for verifying various se-
curity properties, its essential to thoroughly understand the
NFV system’s design and workflow, which might be intract-
able as the NFV stack is a complex system with many inter-
dependent entities located at different abstraction levels (as
explained in Section 2.1). Moreover, the NFV standards
(e.g., IETF-RFC7498 [33] and ETSI [2]) do not provide the
necessary details for fully understanding the NFV system
workflow and mapping the states of network services across
the layers.
Locating the Data Sources for Security Properties. To
verify a given security property, it’s necessary to identify
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all relevant data sources and determine what data to collect
from each source. This would require a good understand-
ing of the property and accurately mapping its semantics
to the corresponding NFV system resources, which also
requires adequate awareness of the entities and their rela-
tionships within the NFV stack. Several security properties
may require data from multiple levels of the NFV stack,
depending on the involved data sources and their associated
relationships. E.g., verifying SFC traffic isolation property
[35], entails collecting data from the VDUs at L2, as well as
from VMs and vSwitches at L3.
Data Correlation and Aggregation. Data sources are typic-
ally scattered across multiple physical servers and different
NFV stack levels, each with its own data format (e.g., SFC
traffic steering data is stored as OpenFlow rules at L3 and as
database instances at L2). Therefore, its necessary to process
the data into a consistent format and piece together related
data within the same level (i.e., data aggregation), espe-
cially when audit data is scattered across different tables
(e.g., the SFC data resides in different Neutron tables and
Nova databases). Moreover, we need to link between data
across different levels (i.e., data correlation) to obtain the
necessary information for verification. These challenges will
be addressed in Sections 4 and 5.

2.4 Threat Model
Our in-scope threats include both external attackers who
exploit existing vulnerabilities in the NFV stack, and in-
siders such as cloud users and tenant administrators who
cause security breaches either by mistakes or with malicious
intents. Similar to most security verification solutions (e.g.,
[32], [36]), we trust the NFV provider for the integrity of
the audit input data (e.g., logs and configurations). We also
assume that the ER model correctly captures all the relations
between the NFV system entities within the same level
and captures all the mapping between cross-level entities,
and any new changes in the system design affecting those
relationships and mappings will be updated in the ER
model. We assume that the properties defined in the paper
are correct and complete i.e., it encompasses all the data and
required relations to describe the given property. We also as-
sume that one-level security property verification combined
with verifying consistency properties for all levels would be
sufficient for cross-level verification of a security property
(as detailed in Section 4). Whereas, consistency property
inspects whether the specifications set by the tenants or
service providers are implemented correctly in the NFV
system and that the implementation of resources at a specific
level is instantiated correctly at the underlying level(s). This
paper focuses on the verification of consistency properties
and security properties related to the static configuration of
the virtualized infrastructure, such as the proper configur-
ation of isolation mechanisms. Any property violation that
is not reflected on logs and configurations is beyond the
scope of this paper. Although dynamic properties, such as
reachability-related properties, also can be verified through
formal methods (Lopes et al. [37]), these are out of the scope
and they will be investigated in our future work.

Additionally, although our cross-level security verifica-
tion solution can detect a violation of security properties,
its not designed to attribute such a violation to underlying

vulnerabilities (i.e., vulnerability analysis) or specific attacks
(i.e., intrusion detection). However, mitigation solutions
(e.g., [38], [39]) can be applied to address the risks associ-
ated with security breaches or vulnerabilities. These include
security hardening options such as updating and patching
vulnerabilities, enforcing strict security policies and access
controls, conducting regular security audits, penetration
testing, hypervisor introspection, remote attestation, and
rollback to known good configuration.

3 OVERVIEW

Figure 3 shows an overview of NFVGuard+ including its
three major steps and application to NFV.
1. Constructing the ER Model. To model the intercon-
nectivity between different components in an NFV system,
we construct the ER model that mainly captures: (i) the
relationship between NFV entities within the same level,
and (ii) the mapping between NFV entities from different
levels (detailed in Section 4.1).
2. Automated Consistency Property Derivation. We auto-
matically derive consistencies (which will be used in cross-
level security verification later) between different entities in
the NFV stack based on the ER model. More specifically, we
derive properties that include the: (i) consistency of entity
configurations, (ii) consistency of the relationship between
two entities, and (iii) consistency of cross-level mapping
(detailed in Section 4.2).
3. Cross-level Security Verification. We conduct cross-level
security verification by utilizing two major steps: (i) veri-
fying a security property for one level, and (ii) applying
that verification result to other levels using the consistency
results. We also provide a general guideline for the users to
identify new properties (detailed in Section 5).
Application to Openstack/Tacker. As a potential applica-
tion of our solution, we integrate NFVGuard+ with Open-
Stack/Tacker (a popular choice for NFV deployment) [23].
In our implementation, the user-defined network ser-
vice descriptors are uploaded to Tacker through Hori-
zon/CLI [23]. We choose the latest version of OpenStack
(i.e., Rocky) and Tacker (i.e., Tacker-0.10.0) [23] to obtain
the most recent features of NFV deployments. Finally, the
traffic steering among the VNF elements is handled by the
OvS switches [40]. We will detail the testbed data generation
approach, report implementation challenges, and describe
the integration of NFVGuard+ into the testbed in Section 6.

4 ER MODEL CONSTRUCTION AND CONSISTENCY
PROPERTY IDENTIFICATION

This section shows how the ER model is built and how the
consistency properties are identified based on the model.

4.1 Constructing the Entity Relationship (ER) Model

To capture the relationships between NFV entities (e.g.,
between VNFFG and Path entities) both within and across
NFV levels, we devise an ER model for the NFV stack
(shown in Figure 4). The shaded nodes represent NFV-
related entities, while non-shaded nodes represent entities
related to the underlying infrastructure. The directed edges
show the relationships between those entities at the same
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Figure 3: An overview of the NFVGuard+ approach.

level, while (1:1), (1:M), (M:1), and (M:M) represent the
corresponding cardinalities of the relations. The dashed line
edges represent the cross-level mapping between the entities
at different levels, which have a (1:1) cardinality.

We construct the model by performing a comprehensive
study of the system configurations of a real NFV testbed
implemented using OpenStack/Tacker [23] (detailed in Sec-
tion 6), and relevant literature on modeling and deploying
NFV and virtualized infrastructures (e.g., [3], [41], [42]). We
further validate our model with several industrial experts
on NFV from a large telecommunication vendor. In the fol-
lowing, we elaborate on our ER model construction process.
Constructing the Nodes of the ER Model. According to
the NFV deployment model (discussed in Section 2.1), we
divide the ER model into four levels, the Service orches-
tration level (L1), resource management level (L2), virtual
infrastructure level (L3), and physical infrastructure level
(L4). Then, to capture the system entities at each level,
we study the deployment details of NFV environments
[3], [23] and the supporting technologies (such as network
virtualization technologies like VLAN and VXLAN [43]) for
implementing the NFV. Then, we represent the identified
entities as the ER model nodes.

Example 2 In this example, we identify the NS provider,
NSD, and NS nodes in the ER model. The NS provider uploads the
Network Service Descriptors (NSDs) at the Service Orchestration
level (L1), which define the network service based on user require-
ments. Each NSD creates one or more NSs, stored as entities in the
NFV system, along with the NS provider’s ID and information.
Thus, the NS provider, NSD, and NS entities are represented as
nodes in the ER model, as shown in Figure 4 at L1.

Constructing the Edges of ER Model. We construct the ER
model with two types of edges based on the: (i) relationships
between NFV entities at the same level, and (ii) mappings
between entities from different levels. In particular, we
identify the relationships and constraints among same-level
entities and represent them as directed edges with cardin-
ality attributes. Additionally, some system entities at one
level are implemented as different entities at the next level.
The relationships between these entities can be utilized for
verification. We represent these relationships as cross-level
mapping edges connecting NFV entities across different
levels.

Example 3 Since the NSD creates the NS (as explained in
Example 2), we establish a directed edge between these entities,
labeled CreatedFrom(M:1)(Figure 4 at L1), to represent their
relationship. The cardinality ((M:1)) reflects the constraints gov-
erning this relationship: the NSD can create multiple NSs, but
each created NS belongs to only one NSD template. Furthermore,
VNF specifications at L1 of the NFV system are instantiated as

VDUs at L2. Thus, we represent this relationship as a cross-level
mapping between the VNF and VDU entities.

4.2 Automated Consistency Property Derivation
This section illustrates how the ER model is utilized to
automatically derive consistency properties (which will be
used later for our cross-level verification in Section 5).

The relationships between entities in the ER model re-
flect fixed configuration constraints within the NFV system.
For instance, the relationship between the Path and Chain
entities at L1 (refer to Figure 4) is (1:1), indicating that each
Chain is linked to a specific Path, and each Path corresponds
to one Chain. Deviating from these fixed configurations can
lead to unintended service behavior or interruptions.

Accordingly, we can derive properties, namely consist-
ency properties, to verify whether any instances created
within the NFV system comply with the established con-
figurations. These properties can be automatically obtained
by systematically parsing the entities and edges of the
ER model, with the assumption that the model correctly
captures all relationships between the NFV system entities
at both the same and across different levels (Section 2.4). In
particular, we can derive the following consistency proper-
ties.
Consistency of Entity Configuration. Each node in the ER
model represents a system entity with various configuration
options determined by the specifications provided by NFV
tenants. We explore each node to derive a corresponding
consistency property that ensures the alignment of entity
configurations with the defined specifications.
Consistency of Relationships Between Entities at the Same
Level. The directed edges between two entities at the same
level in the ER model signify their relationship, reflecting
system configurations and tenant specifications. We explore
these edges to derive consistency properties that ensure
the relationships align with both system configurations and
tenant specifications.
Consistency of Relationships Between Entities Across
Different Levels. Similarly, the dashed line edges between
two entities in the ER model across adjacent levels represent
a relationship between them. Specifically, this indicates that
an entity at a higher level must have a corresponding
implementation at the next level. We explore these edges to
derive consistency properties that ensure the integrity of the
mappings. Table 1 presents an excerpt of consistency prop-
erties automatically derived from the ER model, including
their corresponding sources, and descriptions.

The aforementioned consistency properties can be auto-
matically obtained from the ER model by representing it
as a graph. In this graph, entities are depicted as nodes,
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Figure 4: The ER model of the NFV stack.

Property ER model source Description

Classifier integrity L1: Classifier entity Classifier configurations should be consistent
with tenant-defined specifications

Forwarding correctness
L1: AssociatedWith relationship
between the Classifier and Path
entities

The classifier should be associated with the
correct path as outlined in the tenant specif-
ications to ensure accurate traffic steering

Service chain
configuration consistency

L1, L2: Cross-level mapping
between the Chain and SFC
entities

Service chain created at L1 should be correctly
instantiated as SFC at L2

Table 1: Example of consistency properties identified from
the ER model entities and relationships.

and relationships are depicted as directed edges, attributed
with relationships and their cardinalities. By traversing the
graph, each node and its connected edges are processed to
extract the relevant consistency properties. These proper-
ties are then stored in two lists: EntityConsistencyProperty
for node-level consistency and EdgeConsistencyProperty for
relationship-level consistency.

5 CROSS-LEVEL SECURITY VERIFICATION

This section describes how NFVGuard+ conducts cross-level
security verification.

Data Collection. To conduct cross-level security verification
in NFV, data must be collected from various sources across
different levels of the NFV stack. For example, to verify
whether a VNFFG is correctly implemented according to
the specification, we need to collect data from various levels,
including the VNFFG specification from the Tacker database
at L1, data about VDUs and ports from the Nova and
Neutron databases at L2, and the OpenFlow rules at L3
from multiple servers. Typically, this would involve manu-
ally inspecting the configurations at each level to identify

relevant data for each property. However, by utilizing the
ER model, we can efficiently identify the necessary data for
each property as follows.

First of all, we must identify the property requirements
(what needs to be verified) and determine their scope
(which level they pertain to). Next, we will map these
requirements at each level to the ER model and identify
the entities within the model that relate to the property. For
instance, the VNFFG configuration consistency between L1/L2
property (refer to [28]) requires that the VNFFG design (at
L1)-including the size of the VNFFG, the VNF sequences,
and the classifiers definition-be correctly instantiated into
corresponding SFC configurations (at L2), including the
SFC size, VDU sequences, and classifier details. One of the
requirements for this property at L1 is to determine the size
of the VNFFG, which indicates the number of VNFs that
comprise it. By referencing the ER model at L1, we should
relate this requirement with the corresponding entities at
this level. Since it pertains to the VNFFGs, we will select the
VNFFG entity as a relevant entity for this property. Then, we
will examine the relationships associated with this entity to
check if they can be utilized by the property. For example,
by examining the relationships associated with the VNFFG
entity, we can observe that the VNFFG may consist of one
or more paths, with each path comprising a chain of VNFs.
This highlights the importance of the Path, Chain, and VNF
entities in determining the size of the VNFFG.

Afterward, we will collect the relevant data for the prop-
erty based on the identified entities and by consulting the
data sources table (Table 2), which is created in conjunction
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with the ER model. For example, the ID of each VNFFG
is stored in the VNFFG entity along with the ID(s) of the
path(s) it is composed of, and each Path entity includes
the ID of the chain that makes it up. While, the size of
the VNFFG, can be determined from the data source of the
Chain entity, as indicated in the Description column of Table
2. Likewise, the relevant data for the other requirements of
the property are identified in the same manner.

Entity Data source Description

Chain The vnffgchains table
in Tacker database

Identifies the CPs and the VNFs in the chain
and the sequential order of the VNFs as
outlined in the specifications

Classifier The vnffgclassifiers
table in Tacker database

Identifies the classified traffic flows entering
the VNF chain path, typically including
details like source port and IP protocol

SFC The sfc_port_chains
table in Neutron database

Stores the ID of the chain created at L1 and
document its instantiation and specifications,
including the flow order between VNFs

Open vSwitch
(OVS)

ovs-fields in OVS
and OpenFlow tables

Store information related to the forwarding
behavior of the network services

Table 2: An excerpt of the data sources for some of the
entities in the ER model, along with a description of the
types of data they contain.

Data Processing. The data required to verify a specific
security property could be collected from multiple levels of
the NFV stack and it may differ in format, as each level
employs distinct technologies (such as resource manage-
ment at L2 and virtual networking elements at L3) and
stores data in different formats (e.g., SFC traffic steering
is stored as OpenFlow rules at L3 and as database entries
at L2). Moreover, this data could be scattered (e.g., across
different database tables or different OvSs) and might not
directly reflect the necessary information needed for verific-
ation. Therefore, we process the collected data to generate
meaningful information for verification and ensure its in a
consistent format compatible with the formal verification
engine (e.g., the input format for the Sugar CSP solver). The
processing of the collected data is outlined below.

1) Data correlation: Due to the distributed nature of
the audit data (e.g., data may be scattered across
different services at the same level, such as Nova
or Neutron in OpenStack or among physical serv-
ers), we need to correlate the collected data within
each level to produce meaningful information for
verification [41]. For example, VNFFG 1 is imple-
mented at L3 as three VMs (VM 01, VM 02, and
VM 03) hosted on two physical servers. To verify
the forwarding correctness of VNFFG 1, we need
to collect the flow rules (determines how traffic
flows through these VMs) stored on both physical
servers and scattered across multiple tables on each
server. For example, if VM 02 and VM 03 are on the
same physical server and we want to verify whether
VM 02 is forwarding traffic to VM 03, we will need
to examine the flow rules stored in tables 0, 5, 10,
and the Group table. Therefore, we need to correlate
all these data to piece together sufficient information
for verification. The relationships between system
entities at each level of the ER model help to identify
the data that needs to be correlated. For instance,
the relationship between the VNFFG entity and the
Path entity indicates that they are interconnected
and their data could be correlated.

2) Data aggregation: Audit data for specific properties,
such as consistency properties, could be distributed
across different levels of the NFV stack. Therefore,
we must aggregate the data from these different
levels to compile sufficient information for verific-
ation. For example, to verify whether a VNFFG is
correctly implemented according to the specifica-
tion, we need to collect the specification data at L1,
aggregate it with the instantiation data at L2, and
further combine it with the implementation data at
L3. The cross-level mapping relationships between
system entities at each level of the ER model assist
in identifying the data that needs to be aggregated.

Formal Verification. We propose to apply formal methods
to verify the compliance of the NFV stack against the iden-
tified security and consistency properties. In this work, we
formalize the properties as a Constraint Satisfaction Problem
(CSP), a time-proven technique for expressing many com-
plex problems. We then apply Sugar [22], a well-established
constraint solver, to check whether these properties are
satisfied. We detail the verification process as follows.

To systematically verify the NFV-related properties, we
need to transform the property requirements as well as the
involved ER model entities and their instances (i.e., the
system data) into the corresponding CSP code. The CSP
code mainly consists of four parts:

• Variable and domain declaration. Entities of the ER
model are expressed as CSP variables with their
domain definitions (over integer), where the domain
encompasses all instances defined by the system
data. For example, for the VNFFG configuration con-
sistency between L1/L2 property, the VNFFG entity
(refer to Figure 5) is expressed as the variable fg
defined over the domain VNFFG such that (domain
VNFFG 0 max_vnffgs) is a declaration of a CSP
finite domain of VNFFGs, where each value between
0 and max_vnffgs is for a corresponding data in-
stance in the NFV system.

• Relation declaration. The ER model relations, in-
volved in the property requirements, are conver-
ted into CSP relations over variables with a sup-
port consisting of tuples of system data. For ex-
ample, the relation between the VNFFG and its
path (refer to Figure 5) is defined as the CSP
relation (relation HasPath 2 (supports(fg
path)), where instances of a given relation are the
set of tuples corresponding to the entities instances.
The CSP relations describe the current state of the
system.

• Constraint declaration. We define constraints, in
terms of CSP predicates, over the involved relation
to specify the conditions that the instances of these
relations should meet. Since CSP solvers provide
solutions only in case the constraint is satisfied (SAT),
we define constraints using the negative form of the
property to obtain a counter-example in case of a
violation.

• Body. We combine different predicates based on the
properties to verify using Boolean operators.
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Figure 5: Thumbnail of the ER model showing entities for
verifying VNFFG configuration consistency property at L1.

When the CSP solver (i.e., Sugar) solves the constraints
and finds no solution (UNSAT), the verified properties are
reported to be compliant. Otherwise, the solution provided
by the CSP solver gives the variables’ instances for which
the negative form of the property is satisfied, meaning
that a violation has occurred. For instance, we express the
property virtual resource isolation presented in Example
1 using the following CSP relations. HasChain(t, sfc)
which evaluates to true if tenant t has/owns a running SFC
sfc, SFCHasVDUs(sfc, vdu) which evaluates to true if the
SFC sfc has assigned VDU vdu, HasVDU(t, vdu) which
evaluates to true if the tenant t has a running VDU vdu. Then
we define the negation of the property in terms of a predic-
ate over those relations to obtain a counter-example in case
of a violation, shown as the VirtualResourceIsolation
predicate in Listing 1 (an excerpt of Sugar code). Example
4 shows how Sugar verifies this property and allows for
obtaining the violation evidence.

Example 4 Suppose that a tenant t with the Tenant_ID
(18e552) is encoded as (10) in listing 1, the Chain (3cf7ca68) he
owns as (1), and the VDUs (49ce0b1e, 738bb405) as (15, 16), re-
spectively. The predicate VirtualResourceIsolation will
evaluate to true if any of the VDUs assigned to the chain (1)
that belongs to tenant (10) is owned by another tenant. According
to the relation instance HasVDU(11 16), the chain (1) has a
VDU (16) that does not belong to tenant (10). Therefore, the
predicate evaluates true and the output of Sugar code is (SAT)
with evidence about what values breached the property i.e., (t=10;
sfc=1; VDU1=16).

//Domains and variables declaration
(domain TENANT 0 10,000) (domain SFC 0 5000)
(domain VDU 0 100,000)
(int t TENANT) (int sfc SFC) (int vdu VDU)
//Relations Declarations
(relation HasChain 2(supports((10 1)(12 3)))
(relation SFCHasVDUs 2(supports((1 15)(1 16)))
(relation HasVDU 2(supports((10 15)(11 16)))
//Predicate Declaration
(predicate(VirtualResourceIsolation t sfc vdu)
(and (HasChain t sfc)(SFCHasVDUs sfc vdu)(not(

HasVDU t vdu))))
//The Body
(VirtualResourceIsolation t sfc vdu)

Listing 1: An excerpt of Sugar source code.

After verifying the NFV-related properties, we ensure
the verification result for other levels using consistencies.
The consistency between different levels of the NFV stack
can be utilized to improve the performance of the verifica-
tion (as we illustrate in the motivating example in Section

1). The key idea is to leverage the consistency result to
perform security verification at one level of the NFV stack,
instead of verifying the same security property at each level
separately. As long as the NFV stack levels are consistent,
the verification results at one level would be applicable to
other levels. We show the performance improvement that
we gain by utilizing the consistency property in experiments
(Section 7).

6 APPLICATION TO OPENSTACK/TACKER

In this section, we detail the deployment and data genera-
tion of our NFV testbed, discuss the challenges encountered
during this process, and detail the implementation of NFV-
Guard+.

6.1 Deploying the NFV Testbed

NFV Testbed Implementation. We build our NFV testbed
using OpenStack [23] with Tacker [31] due to its growing
popularity in the real world (e.g., [27]). More specifically,
we rely on OpenStack for the Virtual Infrastructure Manager
(VIM), which has been adopted by 96% of CSPs and more
than 60% of the telecom operators in their NFV deploy-
ments [44]. We rely on Tacker, an official OpenStack project,
for both VNFM and NFVO modules based on the ETSI
MANO architectural framework [29]. We choose the latest
version, i.e., OpenStack Rocky and Tacker-0.10.0 [23] to
obtain the most recent features of NFV deployments.

NFV Data Generation. We intend to deploy a large-scale
NFV system to assess the performance of NFVGuard+.
However, to the best of our knowledge, there is no publicly
available dataset of TOSCA [45] deployment descriptors
for a large-scale NFV deployment. Therefore, we develop
Python scripts to generate various Virtual Network Func-
tion Descriptors (VNFDs) and Virtual Network Function
Forwarding Graph Descriptors (VNFFGDs) in TOSCA, and
we onboard those to our testbed to deploy different network
services and generate large-scale NFV datasets. To ensure
more diversity, we randomly choose a few parameters in
the template while generating the deployment descriptors:
1) the number of network ports per VNF, 2) the number of
VDUs per VNF, 3) the Flavor for each VNF and VDU, 4) the
number of VNFs for each Network Function Path (NFP), 5)
the order of VNFs for each NFP, 6) the flow-classifier criteria
for each NFP, and 7) the number of NFPs for each VNFFG.

Specifically, the scripts first generate a diverse set of
VNFDs for a given tenant by customizing a base tem-
plate. After that, they generate multiple VNFFGDs (resp.
NSDs) by creating unique network function paths using the
available VNFDs. Then, these descriptors are onboarded to
the VNFM and the NFVO modules in Tacker, respectively,
through Horizon/CLI [23]. Once onboarded, the TOSCA
templates are interpreted and translated to Heat templates
[23]. Then, using the Heat template, Tacker leverages Nova
to provision the virtual instances implementing the VNFs,
and Neutron to provision the virtual networks that provide
the connectivity to and from each VNF. Finally, the traffic
steering among the chains of VNFs is handled by the OvS
switches [40]. Figure 6 shows the detailed flowcharts for
generating VNFDs and VNFFGDs.
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Figure 6: The process of generating VNF and VNFFG/NS
TOSCA template descriptors.

Figure 7: The topology of our NFV testbed (left) consisting
of 20 tenants, 200 VNFFGs, and 200 VNFs and detailed
view (in Horizon [23]) of an attack scenario similar to the
motivating example in Section 1 (right).

VNFDs Generation. Figure 6(a) depicts the procedure to
generate multiple VNFDs for a given tenant. Each VNFD
is used to create one or several VNFs of the same type.
More specifically, we use a base template that our generator
customizes to create a diversified set of VNFDs. First, a set
of virtual subnets is created, and then the corresponding
VNF images are uploaded to be used within the VNFD
templates. For each VNFD to be created, a set of subnets
is selected, and then identifiers for connection points (CPs)
and virtual links (VLs) associated with the VNF are created
accordingly. Then, these identifiers are applied to fill in the
VNFD template. Once these VNFDs are generated, they are
used to generate VNFFGDs/NSDs.

VNFFGDs/NSDs Generation. Figure 6(b) depicts the pro-
cess for generating multiple VNFFGDs (resp. NSDs) for
a given tenant. Similar to generating VNFDs, we use a

base VNFFGD (resp. NSD) TOSCA template with all the
necessary attributes that our generator modifies accordingly
to create a diversified set of VNFFGDs (resp. NSDs). The
generator considers the number of VNFFGDs (resp. NSD),
the available VNFDs, and the VNFFGD/NSD base template
as its inputs. The VNFFGD/NSD base template (origin-
ally in YAML format) is first converted into JSON format
for easier modification. Then a list of existing VNFFGD
(resp. NSDs) is loaded and checked to avoid the creation
of duplicates. To build new VNFFGDs/NSDs, a subnet is
first randomly selected, and then the CPs connected to this
subnet are collected from a random number of VNFDs.
After that, these CPs (each represents a VNF) are shuffled
first and then ordered to create a network function path.
Once a path is created, its verified against the list of existing
paths to avoid any duplication. Then, the VNFs are collected
based on the order of CPs followed by the creation of other
additional information such as node_template, groups,
and network_src_port_id to complete the VNFFGD
(resp. NSD). To finalize the generation of VNFFGD (resp.
NSD), the JSON is converted into YAML again and then
saved as a TOSCA template file.

Figure 7 (left) is generated using OpenStack Horizon [23]
to provide an overview of the network topology of our NFV
testbed consisting of 20 tenants, 200 VNFFGs (each VNFFG
consists of 10 VNFs), and each tenant has 10 VNFFGs.
The figure shows the interconnections between the provider
network and different tenant subnets (which are highlighted
in different colors for each tenant) with their corresponding
routers and VNFs. Figure 7 (right) shows a detailed view
of an attack scenario similar to the motivating example
(Section 1) where a malicious virtual machine (VM5) from
the network of Eve (nfvdsg18-network1, highlighted in
orange), is stealthily added to the service function chain
of Bob implemented in his subnet (nfvdsg18-network2,
highlighted in blue).

NFV Testbed Implementation and Data Generation Chal-
lenges. Hereafter, we will discuss the implementation and
data generation challenges, causes of failures, and our
solutions. Due to space constraints, not all challenges are
covered here.

Version Mismatch. Basic NFV implementation with Open-
Stack requires careful orchestration of at least 14 OpenStack
services. Version mismatch among these services can lead
to deployment failures and pose significant troubleshooting
challenges. For instance, we encountered a silent failure in
OpenFlow rules update, due to a version mismatch between
Neutron and OvS. We addressed this by downgrading Neut-
ron version.

Manual Effort. During the installation process, we en-
countered an unexpected freeze. To bypass the freeze and
complete the installation, we manually installed some ser-
vices specifically, Mistral and Tacker.

Undocumented Deployment Constraints. During data gen-
eration, we encountered VNFFG creation failures due to
undocumented deployment constraints within the VNFFG
template. These failures involved the inability to chain VNFs
using management ports or from different subnets, and re-
quired traffic to originate from the same subnet. We address
these failures by VNFFG template validation.
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6.2 NFVGuard+ Implementation

The data collection component is implemented to collect
data from different OpenStack services, such as Tacker,
Nova, and Neutron [23], as well as from the instances run-
ning on every compute node of OvSs. Specifically, we rely
on the Tacker database to retrieve user-defined descriptors
uploaded to the VNFM and NFVO modules of Tacker (e.g.,
VNFD and VNFFGD) as the basis for verifying most of
the properties. We also rely on a collection of OpenStack
databases, such as Neutron database for information about
SFC networking (e.g., the sequence of service functions, the
traffic steering in-between, and the traffic classifier) and
Nova databases (e.g., table Instance) for information about
the tenant, the VDU, and the hosting machine. Finally, we
collect the OpenFlow tables and internal OvS databases
from all the compute nodes, e.g., to check for properties
such as inconsistencies between L2 and L3. To process the
collected data, we implement the data processing compon-
ent in Python and Bash scripts. First, for each property,
our processing component identifies the involved relations,
and the supports of the relations are either fetched directly
from the collected data (e.g., the support of the relation
BelongsTo) or recovered after data correlation. Second, our
processing component formats each group of data as an n-
tuple, e.g., (resource, tenant), (OVS, VLAN, VXLAN), etc.
Finally, it uses the n-tuples to generate part of the Sugar
[22] source code and appends the n-tuples with the variable
declarations, relationships, and predicates for each security
property. Then we develop a customized script to generate
the Sugar source code for the verification of each prop-
erty. The formal verification component is implemented to
feed the generated code into the Sugar CSP solver version
2.3.3 [22]. Sugar then produces the verification results to
either state the property holds or provide evidence when
the property is breached.

7 EXPERIMENTS

This section evaluates the effectiveness of NFVGuard+ in
terms of accuracy, efficiency, and scalability through exper-
iments using real and synthetic datasets. In the following,
we describe our experimental settings and findings.

7.1 Experiments with Synthetic Data

Experimental Settings. We deploy our testbed on a Super-
Server 6029P-WTR equipped with Intel(R) Xeon(R) Bronze
3104 CPU @ 1.70GHz and 128GB of RAM. To evaluate the
performance of NFVGuard+, we generate various synthetic
datasets of different sizes varying from 1K up to 5K VNFFGs
(representing reasonably large NFV setups [46]), and from
20K to 100K VMs. All data processing and experiments are
conducted on the SuperServer with the verification tool,
Sugar V2.3.3 [22]. Each experiment is performed 1,000 times
to avoid any fluctuation caused by other operations on
the server. The reported results show the efficiency and
scalability of NFVGuard+.

Effectiveness Evaluation of NFVGuard+. To evaluate the
effectiveness of our approach, we apply NFVGuard+ to
pre-validated instances of security properties and assess its
accuracy in verifying those instances. Table 3 shows some

example security properties, their investigated instances, the
instantiated Sugar code for each instance, and the corres-
ponding Sugar output.

The accuracy of our approach depends on the precision
of the formal verifier, specifically the Sugar SAT solver.
To test the solver’s accuracy, we provide the solver with
pre-validated instances and compare its results with our
own. In particular, we verify instances of the VNFFG con-
figuration consistency, virtual resource isolation, and mapping
unicity VLANs-VXLANs properties. These instances are first
tested by us for compliance before being given to the solver.
Then, we check if the solver incorrectly identifies any of
the compliant instances as non-compliant. Our evaluation
shows that the solver output is accurate, correctly identify-
ing all instances as compliant. Examples of these instances
are shown in the first four rows of Table 3, where the solver
output is UNSAT, indicating that the instances comply with
the corresponding properties. For clarity, the instantiated
Sugar code has been shortened and simplified. For more
details on Sugar syntax and the full code excerpt, refer to
Section 4.

Next, we inject security breaches at different levels of
the NFV stack and test the accuracy of our approach in
identifying those breaches. First, by exploiting a privilege
escalation vulnerability in OpenStack (OSSA-2017-004 [47]),
we would be able to modify the specification of an SFC
and add an additional VNF. Such a modification at L2 will
not be reflected at L1, resulting in a breach of configuration
consistency between L1/L2 property. An instance of this breach
is presented in Table 3. In verifying the property, the solver
aims to identify any VNFs that are defined in L1 for the
given chain but not in L2, and vice versa. The solver success-
fully identifies this breach and returns the values that cause
the property violation, specifically: (VNFFG path: 20fp, SFC:
20fp, VDU2: 11f, VDU3: 12f) (refer to Table 3).

Second, we target the flow tables at L3 to create incon-
sistencies with higher levels. By triggering a virtual switch
reconciliation during a network topology update, outdated
flow rules are reinstalled, causing traffic to be steered ac-
cording to old definitions [3]. This leads to a breach in
configuration consistency between L3 and upper levels. An
instance of this breach is presented in Table 3, where we
assume the configuration consistency between L1/L2 property
was verified to be met by the configuration.

In particular, a VNFFG that initially forwarded traffic
from a vRtr to a vFW is updated to route traffic from the
vRtr to the vFW and then to an additional vDPI. While the
SFC at L2 is updated, the L3 flow rules remain unchanged
due to the virtual switch reconciliation vulnerability. In
verifying the property, the solver aims to identify any dis-
crepancies in the traffic steering information collected from
the different levels. The solver successfully identifies this
breach and returns the values (SFC: 30fp, Chain: 30fp, vFW:
18f, vDPI: 19f) as evidence of the violation. Additionally,
we generate misconfigurations to create further breach in-
stances. The last two rows of Table 3 provide examples of
these instances.

Our tests demonstrate the effectiveness of our approach
in providing accurate results for the specified security
properties. In general, using formal methods in security
verification is known to provide provably accurate results
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Property Property instance Instantiated Sugar code Sugar output
VNFFG configuration
consistency between L1/L2

L1: (VNFFG path: 10fp, VNF1: 4f, VNF2: 5f) and
L2: (SFC: 10fp, VDU1: 4f, VDU2: 5f)

((predicate VNFFGConsistencyL1/L2) (and (L1Chain (10fp, 4f, 5f))
(L2Chain(10fp, 4f, 5f)) (10fp = 10fp) )) UNSAT

VNFFG configuration
consistency between L2/L3

L2: (SFC: 10fp, VDU1: 4f, VDU2: 5f) and
L3: (Chain: 10fp, VM1: 4f, VM2: 5f)

((predicate VNFFGConsistencyL2/L3) (and (L2Chain (10fp, 4f, 5f))
(L3Chain (10fp, 4f, 5f)) (10fp = 10fp) )) UNSAT

Virtual resource isolation L2: (Tenant: 1t, SFC: 10fp, VDU1: 4f, VDU2: 5f) ((predicate VirtualResourceIsolation) (and (HasChain (1t, 10fp))
(SFCHasVDUs (10fp, 4f) (10fp, 5f)) (not(HasVDU (1t, 4f) (1t, 5f))) )) UNSAT

Mapping unicity VLANs
-VXLANs L3: (Port: 9p, Switch: 1s, VLAN: 7l, VXLAN: 10xl)

((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 7l))
(MappedToVXLAN (1s, 7l, 10xl)) (MappedToVXLAN (1s, 7l, 10xl))
(not (10xl = 10xl)) ))

UNSAT

VNFFG configuration
consistency between L1/L2

L1: (VNFFG path: 20fp, VNF1: 10f, VNF2: 11f) and
L2: (SFC: 20fp, VDU1: 10f, VDU2: 11f, VDU3: 12f)

((predicate VNFFGConsistencyL1/L2) (and (L1Chain (20fp, 10f, 11f))
(L2Chain (20fp, 10f, 11f), (20fp, 11f, 12f)) (20fp = 20fp) ))

SAT: (VNFFG path: 20fp,
SFC: 20fp, VDU2: 11f,
VDU3: 12f)

VNFFG configuration
consistency between L2/L3

L2: (SFC: 30fp, vRtr: 17f, vFW: 18f, vDPI: 19f) and
L3: (Chain: 30fp, vRtr: 17f, vFW: 18f)

((predicate VNFFGConsistencyL2/L3) (and (L2Chain (30fp, 17f, 18f),
(30fp, 18f, 19f)) (L3Chain (30fp, 17f, 18f)) (30fp = 30fp) ))

SAT: (SFC: 30fp,
Chain: 30fp, vFW: 18f,
vDPI: 19f)

Virtual resource isolation L2: (Tenant: 1t, SFC: 10fp, VDU1: 4f, VDU2: 5f) ((predicate VirtualResourceIsolation) (and (HasChain (1t, 10fp))
(SFCHasVDUs (10fp, 4f) (10fp, 5f)) (not(HasVDU (1t, 4f) (2t, 5f))) ))

SAT: (Tenant: 1t,
SFC: 10fp, VDU2: 5f)

Mapping unicity VLANs
-VXLANs

L3: (Port: 9p, Switch: 1s, VLAN: 7l, VXLAN: 10xl,
VXLAN: 15xl)

((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 7l))
(MappedToVXLAN (1s, 7l, 10xl)) (MappedToVXLAN (1s, 7l, 15xl))
(not (10xl = 15xl)) ))

SAT: (Port: 9p, Switch: 1s,
VLAN: 7l, VXLAN: 10xl,
VXLAN: 15xl)

Table 3: Example property instances for evaluating the effectiveness of NFVGuard+.

[48], [49] for given security properties. A practical challenge
is for administrators to properly identify and define the
security properties based on their specific needs. One po-
tential solution to this challenge is to automatically extract
security properties from standards using natural language
processing (NLP) [50], [51], though this falls beyond the
scope of this paper.

Efficiency of Verifying the Consistency Properties. In
this experiment, we evaluate the efficiency (in terms of
response time, CPU usage, and memory consumption) of
NFVGuard+ in verifying the consistency properties derived
from the ER model (refer to Section 4.2). We verify the
classifier integrity, forwarding correctness, and service chain
configuration consistency properties, which correspond to the
consistency properties derived from the different objects
of the ER model, i.e., node, edge, and cross-level edge,
respectively.

According to Figure 8, the verification time increases
almost linearly with the increased number of resources
and the verification requires less than 1.5 seconds for all
three properties even for the largest dataset. The verification
of service chain configuration consistency property incurs the
lowest response time, CPU, and memory consumption as
shown in Figure 8 due to its simplest predicate with a
smaller number of variables than the other two properties.
This is expected as complex properties with a higher num-
ber of relations and variables generally take more time to
process, and consume more memory and CPU. However,
the maximum amount of CPU consumption is less than
12%, while the maximum memory consumption is only 1%.
Hence, though the verification for the forwarding correctness
property takes more time and consumes more resources
than the classifier integrity property, the consumed resource
still stays reasonably low.

Efficiency of Cross-Level Security Verification. In this set of
experiments, we evaluate the verification time required by
the candidate properties presented under different config-
uration scenarios. More specifically, the first configuration
scenario assumes that the NFV configuration has no viola-
tion of any of the considered properties (detailed later in this
section and depicted in Figures 9 (left) and 10 (left)), while in
the second scenario (detailed later in this section), we inject
several violating instances for each of the tested properties
and consider the time to report the evidence only for the

first breach (Figures 9 (middle) and (right) and 10 (middle)),
in case a fast binary answer on the compliance status of the
system is required by the system administrator/auditor. We
then consider the average response time to find all com-
pliance breaches (detailed later in this section and Figures
10 (right), 11 and 12 (left)). For each of the investigated
scenarios, we consider the consistency properties, VNFFG
configuration consistency between L1 and L2, and the VNFFG
configuration consistency between L2 and L3. We also consider
the security properties, virtual resource isolation (L2), and the
mapping unicity VLANs-VXLANs (L3).

Note the required time for detecting non-compliance
with the consistency properties also depends on the level
where the breach is detected. For instance, if we detect a
violation in the consistency property at L1/L2, then the
verification stops and we report the time for non-compliance
of the VNFFG configuration as the time for non-compliance
of the later consistency property (Figures 9 (right) and 11
(middle)). Since the hierarchy of the NFV stack implies that
any faulty configuration at the higher levels would lead to a
fault at the lower levels, to reduce the verification time, we
exploit this observation and stop the verification once we
have a violation at higher levels. Otherwise, we continue
the process to verify the non-compliance of the consistency
property between lower levels (e.g., L2/L3). In this case, the
verification time is the time for verifying the consistency
property between L1/L2 in case of no breach and the time
for reporting non-compliance at the lower levels L2/L3
(Figures 9 (middle) and 11 (left)).

Scenario 1. Cross-Level Security Verification in Case of Com-
pliance: Figure 9 (left) depicts the verification time for the
consistency properties in case of compliance. In general,
the consistency property verification consumes more time
for verifying between higher levels (it requires 1∼5s for
L1/L2) than for lower levels (1∼3s for L2/L3) due to a more
complex and higher number of relation instances of the
predicates between higher levels. Moreover, we also observe
that with an increased number of VNFFGs, the required
time is increasing almost linearly.

Scenario 2. Cross-Level Security Verification in Case of De-
tecting the First Breach: Figure 9 (middle and right) depict
the verification time for the consistency properties in case
of non-compliance and providing the evidence for the first
security breach. The time to detect and report the first breach
(∼ 3s while the first breach was found at L1/L2, and ∼ 6s



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

Figure 8: Verification performance for the consistency properties while varying the number of service chains.

Figure 9: Verification time for the topology consistency properties in case of compliance (left), in case of reporting the first
breach verifying between levels L2/L3 (middle), and in case of reporting the first breach verifying between L1/L2 (right).

Figure 10: Verification time for the security properties virtual resource isolation (left) and mapping unicity VLANs-VXLANs
(middle) in case of compliance and in case of reporting the first breach. Verification time for finding all compliance breaches
(10 breaches) for the consistency property L1/L2 using SAT and ALLSAT solvers (right).

for L2/L3) is less than the time required for assessing the
same property in case of compliance (∼ 8s). This is due to
the action of immediately stopping the verification process
after finding the first breach as we mentioned earlier. Also,
the time for detecting breaches between lower levels is not
far from the time in the case of compliance, which can be
attributed to the fact that the verification of consistency
property between higher levels is more time-consuming
than the one between lower levels. We consider the time for
detecting non-compliance to be reasonable for application
in real life as a non-real-time auditing solution.

Figure 10 (left and middle) show the time for verifying
the security properties in case of compliance and reporting
the evidence for the first breach. The verification of mapping
unicity VLAN-VXLAN is more efficient (less than 1 second),
and the required time increases more slowly than it does
for the virtual resource isolation (6 seconds for the largest
dataset) as the latter has more complex predicates involving
a higher number of relation instances. Similarly, as in the
case of consistency properties, the time for reporting the

breach is shorter than the time for asserting compliance for
both of the security properties.

Scenario 3. Cross-Level Security Verification in Case of De-
tecting All the Breaches: Figure 10 (right) shows the average
verification time to find all compliance breaches for the
consistency property L1/L2 for both the case of using SAT
[22] and ALLSAT [52] solvers, while the given number
of breaches in each dataset is 10. The figure shows that
the ALLSAT solver is faster than SAT solver in finding
all the security property breaches. The reason is that SAT
solvers can only provide a single solution in each run, while
ALLSAT solvers are capable of finding multiple breaches in
a single run. As a ramification, to find all the solutions, we
have to run the SAT solver again and again until finding all
breaches (i.e., for determining 10 breaches in the experiment,
we have to run the solver 10 times). Hence, ALLSAT is
clearly more applicable when finding an exhaustive list of
breaches is desirable.

Consequently, we analyze the efficiency of the ALLSAT
solver in detecting all 10 breaches (Figure 11). Figure 11
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Figure 11: Verification time for the topology consistency properties, virtual resource isolation, and mapping unicity VLANs-
VXLANs in case of reporting all compliance breaches using ALLSAT solver, with (left) reporting all breaches for verifying
between levels L2/L3, (middle) reporting all breaches for verifying between L1/L2, and (right) reporting all breaches for
verifying virtual resource isolation and mapping unicity VLANs-VXLANs.

(left) shows the average time for detecting non-compliance
breaches at the lower levels (∼ 66s) for the largest dataset
(5K VNFFGs), and Figure 11 (middle) shows the verification
time for detecting non-compliance breaches at the higher
levels (∼ 80s) for the same dataset. The ALLSAT solver
could efficiently find all the violations, and the time for
detecting multiple violations is longer than the time of
detecting a single solution and assessing the compliance
of the system in case of no breach. This indicates that the
verification time of our solution increases with an increasing
number of violations. Also, the time for finding all the
breaches for the consistency property at L1/L2 is more than
that for the consistency property between L2/L3, which
is related to the complexity of the property at the higher
levels. Therefore, the verification time for the lower levels
is less than that of the higher levels, especially that the
time for compliance verification of the consistency property
at L1/L2 is as short as ∼ 5s. Moreover, even though the
verification of the higher levels takes more time, its still
much faster than the naive approach of verifying both of
the properties, which would take both the time for verifying
the consistency property between L1/L2 in case of non-
compliance (i.e., ∼ 80s) and the time for verifying the con-
sistency property between L2/L3 in case of non-compliance
(i.e., ∼ 62s).

Figure 11 (right) shows the time for verifying the security
properties in case of reporting all compliance breaches. The
time of reporting all compliance breaches for both of the
security properties is longer than the time for reporting
compliance. Moreover, the time for reporting all breaches
of the virtual resource isolation property (∼ 2m for the largest
dataset (100K VMs)) is higher than the time for reporting
all breaches of the mapping unicity VLANs-VXLANs prop-
erty, as the latter is more complex. Figure 12 (left) studies
the effect of increasing the number of violations on the
verification time. In this experiment, we verify the mapping
unicity VLANs-VXLANs property, and we vary the number
of violations encountered in the dataset where the dataset
size is (100K VMs). As depicted in the figure, the time
increases almost linearly with the number of violations, and
it takes about 3.7m to verify 50 breaches.

Efficiency Improvement Due to the ER Model. This set
of experiments is to evaluate the efficiency improvement
(Figure 13) resulting from utilizing the ER model in multi-
level security verification by comparing its required time

Figure 12: Verification time for reporting all breaches for the
security property mapping unicity VLANs-VXLANs while
varying the number of breaches (left) and the time for
parallelizing the verification of the virtual resource isolation
property (right).

Figure 13: Comparing the verification time of the multi-level
security property without (the grayscale bar) and with (the
bar with patterns) the utilization of ER model.

with that of a conventional security verification approach
(i.e., conducting security verification at each level). We
verify the “SFC ordering and sequencing as defined by
the specification” security property (defined in [28]), which
checks if the deployed SFCs maintain the order of VNFs
with the correct traffic forwarding behavior as defined by
the specifications.

Figure 13 shows the required time for the multi-level
verification for the “SFC ordering and sequencing as defined
by the specification” security property. The grayscale bar
represents verifying this property at each level of the NFV
stack as mentioned in the motivating example (Section 1).
The bars with patterns show the required time for verifying
the same property with the existence of the ER model i.e.,
by verifying the consistency between the NFV stack levels
after verifying the security property at one level (i.e., L2
in the figure, the middlebox with solid gray color). Each
bar in the figure consists of three portions, where each por-
tion represents the required time for verifying the security
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properties at each level or the consistency properties. With
the help of the ER model, its possible to only conduct the
security verification at one level (e.g., L2) and then conduct
the consistency verification for the adjacent levels. Figure 13
depicts that the implementation of the ER model reduces
the verification time; for instance, for the largest dataset
(5K SFCs), the implementation of the ER model reduces the
overall verification time by 1.4 seconds.

Applicability of NFVGuard+ to Different Solvers. The in-
tention of this experiment is to investigate the applicability
of NFVGuard+ to different SAT solvers. Our implementa-
tion is based on Sugar, which is an SAT-based constraint
solver, where the CSP is solved by a backend SAT solver.
Sugar supports MiniSat [22] as the default backend SAT
solver. Our next experiment also investigates ALLSAT (i.e.,
short for all solutions SAT) backend solver [53], a variant
of SAT solvers that deals with enumerating all satisfying
assignments of a propositional logic formula. To the best
of our knowledge, clasp [54], PicoSAT [52], and relsat [55]
are the only ALLSAT solvers. Since PicoSAT is the only
ALLSAT solver supported by Sugar, we consider this in our
implementation.

More specifically, to demonstrate the applicability of
NFVGuard+ to different solvers, we implement Sugar to
assess the consistency properties at L1/L2 using ALLSAT
(i.e., PicoSAT) and SAT (i.e., MiniSat) solvers. Figure 14
illustrates this verification performance in terms of time,
CPU, and memory. Figure 14 depicts that the performance
of both ALLSAT and SAT solvers is mostly similar. Gener-
ally, for both these solvers, resource consumption increases
almost linearly with the increased number of VNFFGs. The
ALLSAT solver requires a slightly longer verification time
(Figure 14 (left)); to be specific, ALLSAT takes ∼ 1.3 seconds
more than the SAT solver to verify the same property for the
largest dataset (5K VNFFGs). On the other hand, ALLSAT
solver consumes less CPU, while the memory consumption
is almost the same for both solvers. On the other hand,
though ALLSAT solvers are slower than SAT solvers, the re-
quired time by ALLSAT solver to identify multiple breaches
(especially for a larger number of breaches) is less than
an SAT solver as we described earlier in Figure 10 (right).
Hence, we can conclude that NFVGuard+ is not solver
dependent, and hence a user should choose the solver based
on his/her requirements (e.g., find multiple breaches at a
time or one by one).

Parallel Execution of the Properties. We can reduce the re-
quired time by verifying the properties in a parallel manner.
Though different approaches are used to parallel verification
[56], Sugar unfortunately, does not support parallelization.
Hence, we adopt the search space splitting technique [56]
which adopts a similar logic as in other parallel verification
approaches. Specifically, in our technique, we split the audit
data across multiple CSP instances that implement the same
property rather than splitting the search space. In this way,
we reduce the payload of verifying one large CSP instance
by verifying less volume of audit data, and we can run the
CSP instances in parallel. We choose the virtual resource
isolation property because its the most resource-consuming
property in case of detecting all non-compliance breaches
(refer to Figure 11 (right)), and we also evaluate using the

largest dataset with 100K VMs. As shown in Figure 12
(right), the time for the first round (two CSP instances) is
reduced by 55% and the required time continues to decrease
until we reach a reduction of 99%.

7.2 Experiments with Real Data
We apply NFVGuard+ to the real data collected from a real
infrastructure hosted at one of the largest telecommunica-
tions vendors. The examined part of the infrastructure is
composed of two racks, connected to two edge switches,
which are connected to two aggregate switches, as depicted
in Figure 15. The data contains 20 tenants, 111 VMS, 9
subnets, 26 physical servers, 26 vSwitches, 679 OvS flows,
35 VLANs, and 9 VXLANs. We apply NFVGuard+ to verify
this real data against various properties. We report the
average findings among those properties in Table 4. The
resource consumption in terms of time, CPU, and memory
increases with the amount of data as shown in Table 4. This
result also follows a similar trend to what we found for the
synthetic data in previous experiments. We can also observe
that the values of resource consumption in this experiment
are generally much smaller than in previous experiments
performed using synthetic datasets (which were deliberately
scaled up to evaluate the scalability of our solution).

Performance
metrics

Percentage of dataset
20% 40% 60% 80% 100%

Time (S) 0.78 0.84 0.88 0.90 0.93
CPU (%) 2.48 2.57 2.62 2.65 2.66
Memory (%) 0.041 0.044 0.046 0.046 0.047

Table 4: The experimental results of NFVGuard+ for the real
data. The average time, CPU, and memory required for the
verification of three sample NFV security properties, i.e.,
VNFs co-residence, virtual resource isolation, and mapping
unicity VLANs-VXLANs, based on real data.

8 DISCUSSION

A Guideline to Adapt NFVGuard+ to Other NFV Plat-
forms. NFVGuard+ utilizes the constructed ER model to
identify the audit data and formulate the NFV security
properties. Although the ER model is based on OpenStack-
/Tacker, its general enough to be extended to other plat-
forms, especially because we capture high-level components
related to the general concept of NFV that are common to
most of the deployments. We detail how the ER model will
change at each level if we consider different implementation
platforms as follows.

The first level in the ER model represents the entities
created at the service orchestration level after processing the
network service design specification (NSD) from the NFV
user/provider. At this level, platforms such as ONAP [30],
OSM [57], and Tacker are employed to enable the design,
creation, orchestration, and auto-scaling of services on top of
the resource management and virtual infrastructure layers.
In our model, we depict high-level components related to
the network service itself (not on the deployed platform),
therefore, our model at this level is general and can be
extended to different deployments. However, the scripts to
collect and correlate data may vary with different deploy-
ments, especially when the data needs to be extracted from
the configuration files specific to the deployed platform.
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Figure 14: Verification performance for the consistency property L1/L2 using ALLSAT and SAT solvers.

Aggregate 

switch 2

Aggregate 

switch 1

Tenant1

...
...

Tenant11

Tenant20

...

Edge 

switch 1

Rack1

Edge 

switch 2

Rack2

Tenant17

Figure 15: The topology of a part of a real cloud data center
operating NFV used in our experiments.

The same thing follows at the second and third levels of
our ER model. Different cloud platforms can be deployed
at L2 to instantiate the network services, and most of
them offer similar capabilities of creating, provisioning, and
managing the virtual resources required for instantiating
the network services. Our model captures the main virtual
components that are common to those platforms.

For instance, we consider a specific virtual infrastructure
level implementation mainly relying on VLAN and VXLAN
as well-established network virtualization technologies and
OvS as a widely used virtual switch implementation. Other
platforms may support different virtualization technologies
such as Generic Routing Encapsulation (GRE) [58] or Gen-
eric Network Virtualization Encapsulation (GENEVE) [59].
In this case, the entities of the ER model at this level will
change but not significantly (e.g., replacing the VXLAN
entity with GRE), and the properties may either remain ap-
plicable or need to be modified or skipped. As an example,
in the case of small to medium clouds, where VLAN tags are
sufficient to implement all L3 virtual networks on top of the
physical network, the ER model will be simplified, and the
security properties related to the mapping between VLAN
and VXLAN become unnecessary.

In summary, our ER model and properties formulation
cover high-level virtualization components that are com-
mon to most deployments. Therefore, it can be adapted to
most of the deployments with minor changes. The scripts to
collect and process audit data need to be revised according
to the implementation details of each deployment. However,
this is a one-time effort that is only needed before initializing
the verification process.

Scope of the Security Verification. The security verification
is conducted at a specific level(s) based on the definition
of the verified security property. For example, the “Map-
ping unicity VLANs-VXLANs” security property (defined
in [28]) can be verified only at L3 of the NFV stack because
the data relevant to it exists at that level. Other properties,
such as the “SFC ordering and sequencing as defined by

the specification” security property (defined in [28]) require
collecting data from various levels such as L1, L2, or L3. In
this case, it depends on the auditor to define the specifica-
tions of the property. Therefore, the verification is property-
dependent and sometimes can extend to all levels to ensure
the correctness of the security property in the entire stack.

Automated Implementation. Since NFVGuard+ works with
a static snapshot of the NFV environment, to maintain the
security of the audited system, it needs to run periodically
or on-demand when a change is made to the system. To
that end, setting the period between verifications could be
critical: a large interval between two verifications could lead
to undetected security breaches and a small interval might
incur prohibitive overhead. Hence we intend to improve
the efficiency of our approach by exploring and adopting
incremental [60] or proactive [61] techniques. Moreover, our
current approach requires some manual effort and expert-
ise in constructing the ER model, identifying the security
properties, and formally encoding them. Although most of
these efforts is done only once, we aim to automate those
processes in our future work.

Limitations. NFVGuard+ focuses on verifying the compli-
ance of the NFV stack with respect to consistency properties
and security properties. Specifically, the properties within
the scope of this paper include those pertaining to the static
configuration of the virtualized infrastructure. This involves
ensuring the proper configuration of isolation mechanisms
and maintaining topology consistency. Out of scope prop-
erties include dynamic properties, such as those related
to reachability and network forwarding functionality. Al-
though these properties can be verified using formal meth-
ods, they will be addressed in future work. Furthermore,
while our approach can detect violations of security and
consistency properties that may result from vulnerability
exploitations, threats, or attacks, its not designed to attribute
such a violation to specific underlying vulnerabilities (i.e.,
vulnerability analysis) or particular attacks (i.e., intrusion
detection). Additionally, it does not detect violations that
are not reflected in logs and configurations, as the accuracy
of our audit results relies on the input data extracted from
these sources.

9 RELATED WORK

Most existing security verification solutions (e.g., [4]–[18],
[24]) in NFV focus on the verification of one particular level
(mostly SFC). In particular, ChainGuard [11], SFC-Checker
[13], Cohen et al. [15], and AuditBox [16], all verify the cor-
rect forwarding behavior of SFCs. Other solutions, including
NFVSense [6], CloudVaults [7], APPD [18], and Cheng et al.
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Solution NFV Levels Property MethodL1 L2 L3
[17] ✓ ✓ ✗ ✗ Security Graph theoretic
[35] ✓ ✗ ✓ ✗ Network Custom algorithms

[10]–[12] ✓ ✗ ✗ ✓ Correctness, performance Trusted shim layer, graph theoretic
[4]–[9], [13]–[16],

[18], [24] ✓ ✗ ✗ ✗ Network, correctness, integrity Remote attestation, MaxSAT solver, graph theoretic, custom algorithms, trusted shim,
verified routing protocol, packet pair dispersion, tag-based verification, and machine learning

[36], [62]–[65] ✗ ✗ ✗ ✗
Security, operational, network,

identity and access control Graph theoretic, CSP solver, custom algorithms

NFVGuard+, [25] ✓ ✓ ✓ ✓ Security and consistency CSP solver, machine learning

Table 5: Summary of existing solutions. The symbols (✓) and (✗) mean supported and not supported, respectively.

[24], focus on SFC integrity verification. vSFC [8] verifies
various SFC violations (e.g., packet injection attacks and
path non-compliance) and vHSFC [5] utilizes a lightweight
Verified Routing Protocol (VRP) to detect various hybrid
SFC violations and attacks. EnsureS [4] introduces an SFC
path validation model that employs batch hashing and tag
verification. VeriNeS [17] proposes a runtime verification
framework for detecting anomalies in network services. In
contrast, Zoure et al. [66] investigate NFV network service
anomalies and the challenges in achieving verification.

Several solutions (e.g., [9], [10], [12], [14]) focus on veri-
fying SFCs functionality and performance. They cover a
wide range of verification aspects, such as performance and
accounting [10], SLA-related performance properties [12],
verification of reachability policies [14], and detection of
dependencies and conflicts between network functions [9].
Unlike all those works, the main focus of our approach is
to ensure the security of an NFV stack at all levels. Also,
unlike us, most of those works do not formally model the
verification problem.

There are a few solutions (e.g., [25], [26]) that tackle the
multi-level aspect of NFV. Lakshmanan et al. [25] propose
employing Neural Machine Translation (NMT) to detect
cross-level inconsistency attacks. However, their utilization
of NMT for detection is considered less reliable in terms of
accuracy compared to FMs. On the other hand, Alhebaishi
et al. [26] model and address cross-layer and co-residency
attacks through VM placement optimization, focusing on a
narrower range of attacks compared to our approach.

Also, there exist other works (e.g., [36], [37], [41], [62]–
[65], [67]) that verify security properties in virtual networks,
e.g., clouds and SDN. Among them, ISOTOP [41] and Xu
et al. [68] cover the consistency between different cloud
layers. Additionally, there are other solutions, e.g., Net-
Plumber [63], Veriflow [64], and NoD [37] that verify flow
rules against various security and functionality properties in
virtual networks. However, none of these works considers
NFV, and extending them to NFV would require significant
efforts due to the added complexity. Table 5 compares
existing solutions with NFVGuard+. It lists the solutions,
whether they target NFV or other virtual environments, the
NFV stack level they address, and the verified properties
along with their verification methods.

10 CONCLUSION

We presented NFVGuard+, a novel approach to the formal
cross-level security verification of the NFV stack. Specific-
ally, we proposed a system entity-relationship (ER) model
that captures the detailed mappings and the relationships
between the NFV resources across different levels in the
NFV stack and devised a system that offers an assisted

solution for NFV users to identify and verify the NFV prop-
erties by leveraging the ER mode. We implemented a real
NFV testbed using OpenStack/Tacker, integrated our solu-
tion into the testbed, and evaluated our approach through
experiments using synthetic data and real data provided by
one of the largest telecommunications vendors. The results
confirmed the efficiency and real-life applicability of our
approach. In future work, we plan to explore more efficient
techniques using incremental, or proactive verification for
further improvement in terms of efficiency and scalability.
Additionally, although the general approach of NFVGuard+
is platform-agnostic, the current implementation of data col-
lection and processing is still limited to OpenStack/Tacker.
Therefore, we will address this limitation in our future work
through a more modular design with a concrete methodo-
logy for extending to other open-source NFV platforms (e.g.,
OPNFV and OSM).
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