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Abstract. Linux capabilities represent an important security feature for enabling
fine-grained management of privileges. However, limitations in selectively en-
abling capabilities for processes and lagging adoption from application develop-
ers often lead the operators to run containers with unnecessary privileges. Al-
though this can potentially be addressed by modifying the application, minimiz-
ing the set of enabled capabilities, assigning capabilities to executable files, or
using user space utilities like Ptrace, those solutions typically require manual ef-
forts, only provide partial protection, or incur significant overhead. In this paper,
we present CAPMAN, a solution that secures privileged containers by detecting
and mitigating potential capability abuses at runtime. Our main idea is threefold.
First, CAPMAN examines all capability requests made by system calls to en-
sure full protection. Second, CAPMAN performs the detection directly inside the
Linux kernel to ensure its efficiency. Third, CAPM AN mitigates capability abuses
in a transparent manner without requiring any change made to the application or
container. Our evaluation of CAPMAN using real-world CVEs and capability
abuses shows that it can mitigate all the tested capability abuses (most of which
are missed by a state-of-the-art solution) with negligible performance overhead.

1 Introduction

As an important security feature of Linux, capabilities have been around for over two
decades [35]. By assigning different privileged operations with different capabilities,
this feature allows more fine-grained control of privileges for processes than with the
traditional superuser approach. However, the adoption and development of capabilities
have been lagging in practice, especially in container environments [25]. For instance,
Docker by default enables 14 capabilities for all the processes, and during the whole
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lifetime of a container [8]. By abusing capabilities enabled in such privileged contain-
ers, attackers can cause more serious damages such as escaping the containers to attack
the underlying infrastructure [25,35,55,71], which is a common concern of Kubernetes
operators [55]. Such security threats, combined with the increasing popularity of cloud-
native applications hosted in container environments, make managing capabilities for
privileged containers an important area to focus on [13,41,63].

Existing solutions have mostly focused on minimizing the capability sets of bi-
nary files, through static analysis (e.g., Decap [25] and LiCA [64]), analyzing system
calls (e.g., ConfigWiz [32], TCLP [38] and SysCap [75]), and dynamic analysis (e.g.,
the RootAsRole framework [3, 4, 70]). The required capabilities can then be enforced
at runtime using Docker’s ——cap-add and ——cap—drop options, or Linux Security
Modules (LSMs) such as SELinux or AppArmor. Such solutions can reduce the general
attack surface of containers before their execution, but this only provides partial pro-
tection since attackers with access to the containers (legitimate or not) can still abuse
the remaining capabilities at runtime (as shown in our experiments in Section 4). Tools
such as SystemTap’s container_check [46] and BCC’s Capable [29] can trace capability
checks but cannot block suspicious checks. Finally, existing works on limiting system
calls for containers (e.g., [7,17,33,39]) can indirectly influence capabilities but do not
provide direct solutions for managing capabilities.

To address this research gap, we present CAPM AN, an in-kernel runtime solution for
securing privileged containers. CAPMAN analyzes the capability usage of a container
offline, and then detects and mitigates capability abuses at runtime. CAPMAN has sev-
eral unique advantages as follows. First, compared to existing solutions for reducing
the attack surface of containers before their execution, CAPMAN provides a comple-
mentary solution by extending the protection to runtime. Second, CAPMAN performs
its detection entirely inside the kernel, which ensures its efficiency by eliminating the
inherent delay for interacting with the user space. Third, CAPMAN mitigates capability
abuses by dynamically dropping capabilities in a transparent manner to avoid the need
for costly modifications to the container. In summary, our contributions are as follows.

— We propose CAPMAN as the first in-kernel runtime solution for detecting and mit-
igating capability abuses. Applying CAPMAN to a container environment can pre-
vent attackers from exploiting privileged containers for more severe damages.

— We tackle several key challenges in realizing CAPMAN as follows: i) to ensure
CAPMAN can cover every capability request, we develop a kprobe-based kernel
module to intercept those requests via a kernel function; ii) to avoid the user space
delay, we design CAPMAN to perform its detection completely inside the kernel us-
ing lightweight whitelisting and machine learning methods; iii) to safely override
the rule that only the container itself can drop capabilities, we develop CAPMAN
to perform its mitigation using standard kernel functions and procedures.

— Our evaluation of CAPMAN using real-world capability abuses and CVEs demon-
strates its effectiveness and efficiency, e.g., it can mitigate all the 10 tested capabil-
ity abuses (of which eight are missed by an existing solution) with negligible over-
head (< 0.73%) and resource consumption (< 0.5% CPU and < 40 KB memory).

2 Preliminaries

This section gives background on capabilities, the motivating example, and threat model.
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Fig. 1: Examples of Linux capabilities, capability = Table 1: Examples of popular
sets, and capability checking functionality. (over-)privileged containers.

Capabilities and Capability Abuses. Linux capabilities were introduced to provide
more fine-grained separation of privileges than the root vs. non-root design [35]. As il-
lustrated in Fig. 1, the permitted set includes capabilities that the process can bring to its
effective set, and the latter is checked by the kernel to ascertain privileges, e.g., the bind
system call requires the NET__ADMIN capability. When a capability is removed from the
effective set or the permitted set, it cannot be regained by that process. Although de-
signed to improve security, capabilities are sometimes overloaded with privileges, e.g.,
SYS_ADMIN (nearly as powerful as the root), NET_RAW, and SYS_MODULE [35]. As
such, attackers gaining control of a process with such capabilities can abuse them to
lead to more severe security issues such as a container escape [25,35,55,71].

In practice, many privileged containers may have such risky capabilities enabled
for legitimate reasons, such as security analysis [11,33], logging [65], networking [67],
etc., as illustrated in Table 1. Moreover, regular containers may also become privileged
due to i) the lack of temporal control, i.e., capabilities will be enabled for the lifetime of
a container even if they are only needed at the beginning; ii) the lack of support from ap-
plication developers (it is known that most applications are written without considering
capabilities [10,25,47], and few publishers provide information regarding the required
capabilities); iii) the fact that file capabilities are usually not set for common executable
files in popular Linux distributions [25]. Running such (over-)privileged containers is a
common practice that can lead to serious security concerns.

Motivating Example. Fig. 2 illustrates an example of capability abuses in default con-
tainer environments (left), naive solutions (upper-right), and our ideas (lower-right).

Capability Abuse. A privileged Nginx container requires the NET_RAW capability, which
is enabled (but not needed) for the entire lifetime of the container in a default container-
ized environment. Attackers accessing the container can abuse this capability to escape
the container (e.g., via CVE-2020-14386 [48]) and attack the underlying infrastructure.

Existing Solutions. The upper-right corner of the figure shows three categories of poten-
tial solutions and their limitations. First, developers can design the application to add a
capability from the permitted set to the effective set only when needed, and remove it
afterwards. This can significantly reduce the chance of capability abuses. However, as
shown in [25], very few applications are capability-aware (e.g., only seven out of 201
setuid programs in Ubuntu even use file capabilities), whereas operators typically lack
the means due to the unavailability of source codes or their complexity.
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Fig. 2: Motivating example.

Second, the required capabilities can be assigned to executable files of the main
application (e.g., using the set cap command [35]) such that the container can be run
with fewer capabilities enabled. However, in reality attackers can still abuse capabilities
by attacking the main application (which is usually the case in real-world attacks).

Third, a potential solution is to perform runtime detection by interrupting and match-

ing each system call and its arguments against the existing mapping between system
calls and capabilities [25] using a user space tool, e.g., Ptrace. Once an anomaly is de-
tected, we can drop the capability before returning control back to the process, causing
the system call to fail. However, such a user space solution can cause prohibitive delay,
as shown in our experiments in Section 4 (as an extreme case, one of the containers we
experimented on completely failed when attaching Ptrace to its processes).
Our Ideas. In contrast to those naive solutions, CAPMAN is designed to run entirely
inside the kernel to avoid the delay caused by user space solutions, as illustrated in the
lower-right corner of the figure. Specifically, we leverage kprobes, a common tool
used to insert breakpoints into a running Linux kernel. Working at the kernel level,
kprobes allows CAPMAN to access many kernel functions with very low overhead
for efficient detection and mitigation. Moreover, CAPMAN matches every capability
check invoked by system calls against the normal usage, which provides full protection
without the need to modify the application or container.

Threat Model. Our in-scope threats include attacks involving capability abuses in
(over-)privileged containers (e.g., CVE-2022-0492 [49] allows container escape using
the SYS_ADMIN capability, and many other capabilities can be abused to elevate priv-
ileges [52]). These capabilities may be enabled either because they are legitimately re-
quired by the container (as shown in Table 1), or due to misconfigurations [41,55]. We
assume an attacker who has already gained access to a container with some privileged
capabilities enabled. This could be a legitimate user who has access to the container for
normal usage; or an external actor who has gained unauthorized access (e.g., through
remote code execution, web-based vulnerabilities, weak credentials, etc.). Zero-days
that involve abusing capabilities are also in the scope (as our detection does not rely
on signatures of known attacks). Conversely, any attack that does not involve abusing



capabilities, or that tampers with the integrity of CAPMAN or the underlying infrastruc-
ture, the image and container, or the processed data, is out of the scope of this work.
Similarly to most existing whitelisting and detection approaches, we assume the normal
capability usage can be effectively captured during the offline phase. This is more feasi-
ble for containers since these are commonly used to host microservices and cloud-native
applications, which usually have a well-defined and relatively simple functionality.

3 CAPMAN

This section details the methodology and implementation of CAPMAN.

3.1 Overview of CAPMAN

As shown in Fig. 3, CAPMAN works in two phases. First, during the offline phase, the
target container is executed in a safe environment for CAPMAN to capture the normal
capability check events as a whitelist or through machine learning (ML). Second, dur-
ing the runtime phase, the container is run in the production environment for CAPMAN
to detect potential capability abuses through either whitelist matching or ML classifica-
tion, and CAPMAN either alerts the user about detected abuses, or drops the capability
to mitigate such abuses*. To achieve these, CAPMAN consists of i) a kernel module
based on a kprobe for data collection, detection, and mitigation, and ii) a user space
module developed in Python for data processing (only used during the offline phase).
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Fig. 3: Methodology Overview.
3.2 Offline Phase

During the offline phase (the left side of Fig. 3), CAPMAN captures and analyzes the
normal capability usage of a target container to obtain a whitelist or ML model. The
following i) details the data collection using the kernel module; ii) details the data pro-
cessing using the user space module; iii) details the time-phase separation technique
(inspired by SPEAKER [39]); iv) provides an example of how the offline phase works.

Data Collection Using the Kernel Module. To ensure CAPMAN can intercept and col-
lect information about every capability check to provide full protection, we leverage the
finding of existing works [21, 31,59, 70] that the kernel relies on the cap_capable
kernel function to determine whether a process requesting a capability has that capabil-
ity inside its effective set. Specifically, CAPMAN installs a kprobe as its kernel mod-
ule to interrupt the cap_capable function at the beginning of its execution in order to
collect information about capability checks. To ensure kprobe only affects the target

* A future direction is to integrate CAPMAN with container orchestration tools like Kubernetes
and Open Policy Agent (OPA) to enforce such policies without re-compiling a kernel module.



container, we configure it to only proceed if the namespace ID of the process is the same
as the namespace ID of the container (namespaces are used to isolate a container from
the rest of the host). We also set a flag in the kprobe so it does not block any capability
checks and only passively collects information about the passing capability checks.
Various information is collected about each capability check from different sources
inside the kernel. First, the capability being checked is obtained from the dx register.
Second, the system call is obtained by first identifying the reserved process registers
using the task_pt_regs function, and then obtaining the orig_ax register. The
namespace ID is deep inside several layers of C structs in the process object in the ker-
nel, namely, current->nsproxy->pid_ns_for_children->ns.inum. The
PID and process name are obtained from current->pid and current—>comm,
respectively. To transmit that information to the user space for processing, we leverage
dmesg logging [36], a Linux utility for retrieving and displaying information from the
kernel ring buffer (we do not consider a sy s fs file due to its limited size of 4 KB [44]).

Data Processing Using the User-Space Module. The collected data is then processed
in the user space to build a whitelist and train an ML model for performing detection in
the next stage. Specifically, for the whitelisting method, the goal is to build a whitelist in
the form of a set of unique sequences of capability checks, using a sliding window over
all the capability check events. For the ML method, since most ML models are known
to be too complex and computationally expensive for the kernel space [1, 14], we follow
the state-of-the-art work [74] to train a decision tree model that can fit into the kernel
space, using the scikit-learn Python library. For both methods, each capability check is
identified by three attributes, i.e., the capability being requested, the system call, and
the name of the process. Note that both methods need to be repeated once container
behaviors change (e.g., due to software update or new environments), while a future
direction is to apply incremental learning techniques to simplify the model update [54].
Time-Phase Separation. Inspired by SPEAKER [39], we study the capability usage of
containers, and our results indicate that many capabilities are only used at the startup
of a container and then never needed again. Therefore, CAPMAN also employs a time-
phase separation technique during its offline phase. Specifically, similarly as in [39],
we first find a threshold after which all containers’ capability usage stabilizes, and our
results show 20 seconds is an acceptable threshold (see Section 4). We then collect ca-
pability checks before/after this threshold for the booting/running phases, respectively.’

Example 1. Fig. 4 shows an example of what happens during the offline phase. First,
CAPMAN installs its kernel module (kprobe). Second, a container is run in a safe
environment, where the i fconfig process from this container invokes the socket
system call, which requires the CAP_NET_RAW capability. Therefore, the kernel calls
its cap_capable function, which is intercepted by our kprobe. Third, the kprobe
collects various information as shown in the table (bottom of the figure). The text boxes
below the table show how those attributes are retrieved from the relevant registers, ker-
nel variables, and kernel functions. Fourth, the collected information is sent to the user
space for processing. Fifth, considering the whitelisting method, the data is processed
to identify a unique list of sequences each of which includes three capability checks.

3> More than two fine-grained phases can also be considered [66,76].
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3.3 Runtime Phase

During the runtime phase (the right side of Fig. 3), CAPMAN detects and mitigates ca-
pability abuses as they happen in the target container.® The detection is performed on
the observed capability checks based on either the whitelist or the ML model obtained
during the offline phase. As soon as a potential capability abuse is detected, CAPMAN
can either alert the user or mitigate it by removing the requested capability from the ef-
fective set of the process. The following discusses the challenges, details the detection
and mitigation solutions, and gives an example of how the runtime phase works.

Challenges to Detection. A key challenge when detecting capability abuses at runtime
is to keep the delay at an acceptable level. Specifically, CAPM AN can no longer mitigate
a capability abuse once the corresponding system call has already taken effect. There-
fore, CAPMAN needs to put system calls on hold while it determines whether they are
making anomalous capabilities requests. As a result, any time spent on the detection
becomes additional delay experienced by the system calls (and the user process). This
explains why a naive solution of performing detection in user space would cause unac-
ceptable delay to the system call (user process) or even disrupt the normal operation of
the kernel itself. First, as kprobes are simply code pieces inserted in the middle of the
kernel code [42], making the kernel module of CAPMAN (i.e., kprobe) wait for the
user space detection results may cause the entire kernel (and hence the host system) to
be blocked from its normal function (while some parts of the kernel can run system calls
in parallel, many other parts do not [2]). Second, the delay introduced by this design
consists of the detection time and the time required for exchanging messages between
the kernel and user spaces. Such a delay is typically much higher than the average delay
between two consecutive system calls (e.g., around 0.003 ms [33]).

Detection. To address the aforementioned challenges, we need to keep the detection
lightweight enough such that it may be executed entirely inside the kernel space. For
this purpose, we have adopted two lightweight methods, i.e., whitelist matching and de-
cision tree classification (as mentioned earlier, more complex ML models do not fit into
the kernel space [1, 14]). These two approaches are complementary and aim at different

® CAPMAN can be selectively disabled/enabled with different policies for individual containers.



use cases, i.e., the whitelist matching can achieve higher accuracy if the training data
is complete, whereas the decision tree is able to generalize better for previously unseen
data. Despite their relative simplicity, those methods can provide reasonable detection
accuracy, as demonstrated in our experiments in Section 4.

Specifically, to detect capability checks deviating from the normal behavior, the
whitelist of unique sequences (of fixed length V) constructed during the offline phase
for each process is fed into the kernel module. At runtime, the kernel module of CAP-
MAN separately keeps track of the N-most recent capability checks requested by each
process, and compares these N capability checks (as a sequence) to the whitelist to
determine whether there is an anomaly. Here, IV is a parameter reflecting the inherent
tradeoff between detection accuracy and time (i.e., larger N may give high accuracy but
require more time), which will be evaluated through experiments in Section 4.

For classification-based detection, the decision tree trained during the offline phase
is deployed inside the kernel module. This is achieved by translating the correspond-
ing model conditions (i.e., branches) into C code [74]. To overcome the floating-point
limitation of the kernel [43], we only employ integer values for branch conditions. At
runtime, the kernel module of CAPMAN saves each capability check in a ring buffer,
and assembles a sample data point in the form (process_name, syscall_I, capability_1,
..., Syscall_N, capability_N), with N being the length of the sequence. Finally, the data
point is passed through the decision tree for classification.
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Fig. 5: Example of CAPMAN detection.

Example 2. In Fig. 5, suppose an attacker with access to an Nginx container attempts to
escape it by abusing available capabilities. The left side of the figure shows the observed
capability checks including those triggered by the attacker (in red color). The upper-
right shows how the kernel module of CAPMAN matches each observed sequence of
three capability checks against the whitelist. The lower-right shows an excerpt of the
in-kernel decision tree (where the nodes show branches written as C code inside CAP-
MAN’s kernel module). For whitelist matching, CAPMAN finds a match in the whitelist
for the three latest capability checks when (ifconfig|ioctl|NET_ADMIN) is
observed. This is expected since there is nothing abnormal about this capability check
by itself, although it is indeed part of the attack, since i fconfig generally requires
NET_ADMIN (e.g., as seen in the top two rows). Nonetheless, as the attack progresses,



CAPMAN successfully detects the sequence shown completely in red color to be an
anomaly that should be mitigated.

Challenges to Mitigation. Once a potential capability abuse is detected, CAPMAN can
mitigate it by dropping the requested capability for the process. However, a key chal-
lenge here is that the default Linux rules governing the capability sets indicate that a
Linux process is not allowed to alter the capabilities of other processes [35], and hence
CAPMAN cannot directly drop the capability for a process. Moreover, although over-
riding such default rules governing the capability sets is possible, this must be done
with extra caution in order not to disrupt the normal kernel functionality, and, similarly
to the case of detection, this must also be done in an efficient manner to avoid blocking
the normal activities of the container and the wider system.

Mitigation. To address those challenges, we study the Linux kernel source code to un-
derstand how to change the capabilities of another process (i.e., the target container’s)
in a safe and efficient manner. Specifically, our study shows that every process is rep-
resented as a C struct in the Linux kernel called task_struct, which contains the
PID, process name, namespace ID, and the security context of the process stored in
another C struct called cred. This cred object contains the cap_permitted and
cap_effective dataobjects, which correspond to the permitted and effective sets of
capabilities, respectively. Therefore, CAPMAN can mitigate detected capability abuses
by altering those kernel data objects that store the capability sets of each container
process. Specifically, since the effective set is what the kernel will check to determine
whether the process should be granted access, the kernel module of CAPMAN removes
the capability from the effective set of the process, by modifying cap_effective.
It also drops the capability from the permitted set by modifying cap_permitted to
prevent the process (attacker) from adding the capability back. To ensure those modi-
fications are performed in a safe manner, we choose not to directly modify those data
objects in an arbitrary way, but instead follow the existing procedure for updating the
cred struct used in the kernel code, and leverage standard kernel functions.
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Example 3. Following Example 2, Fig. 6 shows how CAPMAN mitigates the detected
capability abuse. Specifically, the attacker’s process makes a socket system call that
requests for the NET_RAW capability. This is detected as an anomaly by the kernel
module of CAPMAN, which runs at the beginning of the cap_capable function’s
runtime. The kernel module thus i) clones the cred object of this process using
prepare_creds, ii) modifies the cloned cred struct using cap_drop to drop the
capabilities from the effective set (and permitted set), iii) commits the new creds
struct using commit_creds, and iv) returns the control back to the kernel to continue
with the cap_capable function. Consequently, cap_capable finds that the pro-
cess does not have the required capability, and hence the capability abuse is prevented.

4 Evaluation

This section evaluates CAPMAN by answering the following research questions:

RQ1: How effective is it in mitigating capability abuses compared to existing works?
RQ2: How accurate is its detection compared to existing works using only system calls?
RQ3: How much time/CPU/memory overhead does it incur compared to current works?
RQ4: How much does time-phase separation help it reduce the attack surface?

Evaluation Environment. For our experiments, we use a VirtualBox virtual machine
(10 vCPUs and 16 GB RAM) running Ubuntu 18.04 on Linux Kernel v5.4. We create
Docker containers with 10 of the most popular images on Docker Hub (totaling over
55 million downloads in one week) to evaluate CAPMAN’s effectiveness’. We also cre-
ate images with 10 other popular applications that involve intensive capability checks
to evaluate CAPMAN’s overhead. To evaluate CAPMAN against real-world capability
abuses, we implement two exploits of vulnerabilities (CVE-2020-14386 [48] and CVE-
2022-0492 [49]), and eight other capability abuses (Table 3a) from the Linux manual
and other sources [35,52]. Each experiment is repeated 100 times.

Effectiveness. To answer RQ1, we compare the effectiveness of CAPMAN to two state-
of-the-art solutions, Decap [25] and Confine [17].
CAPMAN vs. Decap [25]. To show the benefits of CAPMAN’s runtime detection and
mitigation approach over the static analysis approach of Decap [25], we run 10 of the
most popular container images from Docker Hub (totaling over 55 million downloads
in a week) with default configurations during CAPMAN’s offline phase. We run Decap
on the main binary file extracted from each image to identify the required capabilities.
As shown in Table 2, CAPMAN is significantly more effective than Decap in
reducing the attack surface. Specifically, Decap allows 18.5 more capabilities than
CAPMAN on average per application (with no impact on the applications). For
instance, for the RabbitMQ image, Decap allows 24 capabilities, whereas CAPMAN
allows only one capability. This shows the inherent difficulty for a static approach like
Decap to identify the capabilities actually used at runtime (which is a trivial task for a
runtime approach like CAPMAN). A few capabilities (e.g., SYS_ADMIN) are allowed
by CAPMAN (also by Decap) based on observed capability checks, even though these
are not needed (e.g., SYS_ADMIN can be checked when a fork or execve system call is
made by the process [3,70]).

7 The signficant amount of manual efforts required to invoke each application’s normal behav-
iors to ensure coverage explains why we would not be able to perform a larger-scale study.
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SYS_NICE
SYS_PTRACE
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Table 2: Comparing the capabilities allowed by CAPMAN with the capabilities allowed
by Decap [25] for 10 of the most popular container images on Docker Hub.

CAPMAN

CAPMAN vs. Confine [17]. To show the benefit of considering capabilities (in addition
to system calls), we compare CAPMAN with Confine [17], a widely used system call-
based runtime solution. We first apply Confine to a custom Ubuntu container requiring
capabilities as mentioned in Table 3a. As Confine turns out to be over-restrictive, dis-
rupting the container’s normal operations, we manually unblock the necessary system
calls from the generated Seccomp filter to make the containers functional. We then
evaluate Confine and CAPMAN (sequence length of three) against capability abuses.
Table 3a presents the results of CAPMAN, Confine, and Docker’s default capability
check [8]. CAPMAN can detect and mitigate all the capability abuses, whereas Confine
only mitigates two out of the 10 abuses (by blocking the system calls shown under the
table), and Docker by default cannot mitigate any abuse. One of the capability abuses
(installing a kernel module) poses a unique challenge to the mitigation by CAPMAN,
i.e., the cap_capable function appears too late in the kernel’s source code to mitigate

this particular abuse, and consequently is replaced with the capable function.

.. Required |[CAP- [Confine|Docker Sequence Length (N)
Description Cap. Man| [17] (8] : 5 3 7
Change proc. priorities | SYS_NICE | v v X Syscalls TPR (%)|55.14|70.94] 79.14 | 83.41
hf[:lear system l(;gs SYS_ADMIN | v/ v X (e.g.. [5, FPR (%) 070 0.00710.017/40.067
(CVEH;%?OC?E&IEX]S]) NET_RAW v X X 15,27,33]) / FP / 810k|1,968Kk6,946k]
By[_Jass n; ~olation CAPMAN TPR (%)]72.07]71.99]71.42]70.91
SYS_ADMIN | v/ X X Whitelist FPR (%) 1.59/
(CVE»2022—04'192 [49]) Matching JFP 0/0|0/0]|0/0 33724
Escape cont. via cgroup svs apMIN| v X X 7 3
release agent [52] _ TPR (%)|69.94|70.75|70.22 | 69.96
Change iptables rules | NET_ADMIN | v X X Depth FPR (%)| 10l 070 | 070 | 070
Remount read-only sYs apMIN| v X X 1 /FP
filesystem as writable — CAPMAN TPR (%)|87.88|87.85|88.51 | 87.47
Bypass net. restrictions Decision [Depth| FPR (%) 0/0l0/0l0/010/0
through raw sockets NET_RAW v X X Tree 3 /FP
Splff packets and NET_RAW v X X TPR (%)|88.04|99.89|99.90| 99.85
monitor network traffic Depth| FPR (%) 0/0l0/0l0/0l0/0
Install kernel modules [SYS_MODULE| v~ X X 5 /FP

(b) Detection accuracy of CAPMAN and
approaches using only system calls.

(a) Effectiveness of CAPMAN, Confine [17],
and Docker [8].

Table 3: Comparing the effectiveness and accuracy of CAPMAN

Accuracy. To answer RQ2, we evaluate CAPMAN ’s detection accuracy in comparison
to existing approaches using only system calls [5,15,27,33]. We first build a tool to col-



12

lect sequences of system calls in a per-process manner from a Ubuntu container, while
running over 50 common Linux commands using a script, as well as capability abuses.
We then re-implement the system call matching approach following existing works,
and measure the true positive rate (TPR), the false positive rate (FPR), and the absolute
number of false positives (FP). For CAPM AN, we repeat those steps using the capability
check data and CAPMAN’s whitelist matching and decision tree classification methods
(with sequence lengths up to four, since we observe that about 90% of the processes
have four or less capability checks). Overall, we collect a dataset of ~ 39, 000 labeled
samples of normal and abuse system calls as well as corresponding capability checks.

As Table 3b shows, the system call-based method (first row) has an increasing true
positive rate in the sequence length, ranging from about 55% (N = 1) to 83% (N = 4).
In contrast, CAPMAN with whitelist matching (second row) generally has a more sta-
ble true positive rate (between 70% and 72%) across various sequence lengths. The
false positive rate of CAPMAN is slightly lower than the system call-based method for
N < 3,and s larger for N = 4. However, the absolute number of false positives is more
revealing, since for the system call-based method it increases from zero for N = 1 to
more than 800k for N = 2, and almost two and seven million for N = 3 and N = 4, re-
spectively. In contrast, the absolute number of false positives stays at zero for CAPMAN
for N < 3, and only becomes prohibitive for N = 4. This significant difference shows
that, although both methods perform similar sequence matching, examining capability
checks in addition to system calls allows CAPMAN to dramatically reduce the false
positives (from millions to zero). The worse result of CAPMAN under N = 4 is mainly
due to the fact that most (around 70%) of the processes are observed to have only three
capability checks, and hence in practice N should be limited to three for CAPMAN.

The last three rows of Table 3b report the results for CAPMAN with decision trees
of different depths (one, three, and five). We can see that a decision tree of depth three
or more can yield higher true positive rates than both the system call-based method and
CAPMAN’s whitelist matching, and a tree of depth five paired with a sequence length of
two or more can achieve almost perfect results ranging between 99.85% and 99.90%.
In all cases, the false positive rate (and absolute number) remains zero. Clearly, despite
its simplicity, the decision tree model can help CAPMAN achieve accurate detection.
Moreover, more complex ML models (which do not fit in kernel [1, 14]) can transfer
their knowledge to tree-based models [74], paving the way to further improve accuracy.

Overhead. To answer RQ3, we evaluate CAPMAN’s overhead compared to that of a
user space solution based on Ptrace [34] and a kernel space solution for observabil-
ity based on the eBPF toolkit BCC [29]. The experiment is based on 10 short-lived
containerized applications under test usage that involve intensive system call and ca-
pability check activities. Those applications are run under seven different settings: i)
the baseline setting without CAPMAN, ii) a BCC capable setting where we collect ca-
pability checks using an eBPF-based tool [29], iii) an offline setting where CAPMAN
only records the capability checks, iv) a whitelist setting with N = 1, where CAPMAN
performs whitelist matching with a sequence length of one, v) a whitelist setting with
N = 3 (based on our detection accuracy results), vi) a decision tree setting, with a tree
depth of five and N = 3, and vii) a Ptrace setting where Ptrace is used to trace the
activity of every spawning process within the container.
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Table 4a compares the overhead in terms of application performance under those
different settings. The overall results show that CAPMAN has a negligible level of over-
head on the performance of applications, with an average overhead increase of 0.40%,
1.33%, and 2.51% among these containers, for the offfine setting, and the whitelist set-
tings with N = 1 and N = 3, respectively. The decision tree setting incurs 0.73%
overhead on average, comparatively less than the whitelist setting, since the former does
not require searching in a whitelist, and thus is more efficient. In contrast, Ptrace intro-
duces up to 786.14% overhead (156.59% on average) and even causes the OpenJDK
container to fail (marked as F'), which confirms the benefit of CAPMAN’s in-kernel de-
tection. The overhead of BCC Capable and CAPMAN’s offline setting is similar, which
is expected since both do not involve detection or mitigation.

BCC Wh‘l(lj‘AtPi\V/Il?N Tist| Decision| Pt average
s itelis itelist| Decision race Response
Capable| Offline Ne1|N<=3| Tree Tgne
Alpine | 141% |1.28% | 1.98% | 2.48% | 1.44% | 61.26% per System
Golang | 0.02% [0.05%| 1.18% | 2.02% | 0.23% | 62.21% Call
Node | 0.02% |0.08% | 0.97% | 2.21% | 0.65% |102.15% -
Open)DK| 1.07% |147% | 2.08% | 240% | 177% | F Baseline 5447 ns
Python | 0.23% |0.11%] 0.26% | 0.45% | 0.21% | 49.58% BCC Capable 5,499 ns
Stress-ng | 0.11% |0.11% | 3.13% | 7.15% | 0.49% [786.14% Offline 5,593 ns
MySQL | 0.23% [025% | 1.45% | 1.68% | 1.24% | 85.04% Whitelist, N = 1] 5.669 ns
GCC_[0.14% [0.15% | 085% | 194% | 051% | 42.68% | | CAPMAN o me e
Nginx | 0.24% |0.15%| 0.71% | 3.91% | 0.38% |167.41% — - -
Redis | 0.27% [035% | 0.65% | 0.83% | 0.37% | 46.59% Decision Tree | 6,121 ns
Ptrace 207,237 ns

[ Average [ 0.37% [0.40%] 1.33% [ 2.51% | 0.73% [156.59%|
F: The container failed when attaching Ptrace to its processes.

(b) Overhead in terms of system call
(a) Overhead in terms of application response time.  response time.

Table 4: Comparing the response time of CAPMAN with BCC Capable and Ptrace.

Table 4b shows the overhead in term of the average response time for handling each
system call under CAPMAN, in comparison to Ptrace, BCC, and the baseline setting.
The results translate to around 0.95% and 2.68% overhead for BCC Capable and offfine
settings, 4.08% (N = 1) and 2.90% (N = 3) for the whitelist setting, and 12.37%
for decision tree (note such overhead only applies to individual system calls, whereas
the aggregated impact on the application and users remains negligible, as shown in Ta-
ble 4a). In contrast, using Ptrace introduces about 3, 705% overhead for each system
call. This further confirms the benefits of CAPMAN’s in-kernel detection approach.

We also compare CAPMAN’s CPU and memory consumption with those of
Ptrace [34], BCC Capable [29], and the baseline setting. Table 5a shows the results,
where the Container column is for the container in the presence of the corresponding
solution, and the Solution column is for the solution itself. Specifically, among all
the solutions, Ptrace incurs the most overhead both for the container (1.09% CPU)
and for itself (0.98% CPU and 9.89 MB of memory). CAPMAN introduces negligible
CPU overhead to both the container and itself, even under the most complex methods
(maximum 0.56% and 0.44% for decision tree, and 0.55% and 0.41% for whitelist
matching, respectively). The memory consumption in all cases remains constant at
around 1.53 MB, while the memory consumption of CAPMAN is only that of the kernel
module; which represents at most 36 KB when loaded with the whitelist matching
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engine. BCC Capable includes negligible overhead in terms of both CPU and memory
consumption, since it only collects capability checks (no detection/mitigation).

Finally, we also measure the impact of the depth of decision trees on the overhead
and CPU consumption of CAPMAN. Although a depth greater than 5 does not signif-
icantly improve the accuracy in our experiences, we still report results for such cases.
Specifically, Table 5b reports the overhead on the application response time, as well
as the overall CPU consumption for the st ress—ng container (our most intensive
capability-checking application) while varying the tree depth between 1 and 100. Even
with an extreme tree depth of 100, CAPMAN only adds 0.38% of CPU consumption,
and incurs 4.44% overhead on the response time (which is almost two times less than
with whitelist matching, as shown in Table 4a).

Container Solution Overhead Overhead on

CPU [Memory | CPU [Memory on CPU Usage | Response Time
Baseline 0.46% [ 1.53 MB | N/A N/A 1 +0.08% +0.17%
BCC Capable 0.46% | 1.52 MB [ 0.61% | 4.64 KB <[3 +0.09% +0.21%
Offline 0.52% [ 1.52MB [ 0.40% | 24 KB 2[5 +0.08% +0.65%
CAPMAN Whitelist, N =1 [0.55% | .53 MB [ 0.42% | 24 KB e 10 +0.08% +0.84%
Whitelist, N = 3 [0.55% | .54 MB[0.41% | 36 KB E 30 +0.12% +2.52%
Decision Tree 0.56% | 1.57 MB | 0.44% | 24 KB 50 +0.22% +3.33%
Ptrace 1.09% | 1.53 MB | 0.98% | 9.89 MB 100 +0.38% +4.44%

(a) CPU/memory consumption of the container and (b) CPU/Application response time
CAPMAN, Ptrace [34], and BCC Capable [29]. overhead under different tree depths.

Table 5: The performance overhead of CAPMAN.

The Effect of Time-Phase Separation. To answer RQ4, Fig. 7 shows that 48 out of the
top 50 downloaded container images on Docker Hub perform their capability checks in
the first 20 seconds (our threshold). Table 6 shows many more capabilities are needed
during booting than running, and many high-risk capabilities (e.g., NET_ADMIN) can
be disabled after booting. Appendix provides more detailed discussions of those results.

60 Cap. Disabled Running
o clas{icscarch = owt?cloud = registry Boot.| Run. by CAPMAN Phase Cap.
o ghost « cassandra -+ vault . .
© portainer tomcat = consul m Runnmg Phase
» 501 < postgres minio = moodle
A o logstash zookeeper mysql Neinx 47 1 DAC_OVER., SYS_ADM.
F « nextcloud eted fluentd &l SETGID, SETUID
,st::) + arangodb redmine traefik 4
4 wordpress nexus3 redis . SETUID, NET_ADM. -
g, 40 openl}Ziap gitea jenkins Redis 21 0 ! !
< prometheus ~ mongo hed SYS_ADM., SETGID
g rabbitmq mo]squino pgadmind Postgres 25 3 N SYS ADM
rafana influxdb + neo4j = -
% 30 haproxy httpd 4+ sonarqube Httpd 14 1 SETGID, SETUID SYS_ADM.
= telegraf’ # gitlab-ce + kibana
= metabase  # phpmyadmin+- openresty Memcached| 9 0 SYS_ADM. -
G » drupal = bash + wildfly
B 2014 = matad> = adminer MongoDB | 39 | 1 CHOWN, SETGID, SYS_ADM.
g SETUID, NET_ADM.
8 I la MySQL 49 0 |sYS_ADM., SYS_NICE -
I a -
104 = — RabbitMQ | 35 | 0 SYS_ADM. B
I e
. ! - : 3 Traefik 8 0 [NET_ADM., SYS_ADM. -
0 | | | | SYS_CHROOT, CHOWN, | SYS_ADM.,
0 5 10 15 20 25 Docker 64 4 MKNOD, [...], DAC_OVER.,
Time since container start (seconds) NET_ADM., SYS_MOD. [DAC_READ_S.

Fig.7: # of unique capabilities checks Table 6: Capability checks during boot-
over the execution time of containers ing/running phases of 10 applications.



5 Discussions and Limitations

Coverage of Normal Behavior. Like most existing solutions involving a learning step
[39,69], CAPMAN shares the challenge of ensuring sufficient coverage of normal be-
havior during its offline phase. Although not a unique challenge to CAPMAN, we make
the following best efforts to address it: i) we build our evaluation containers according
to best practices of microservices [62], i.e., with a single task in mind, and minimum de-
pendencies (base image and external packages); ii) we apply existing solutions to gener-
ate realistic workloads, e.g., Siege [16] and DirBuster [53] for webservers, HammerDB
for databases, and compilation benchmarks [20,26] for GCC/Golang. In real-world sce-
narios, CAPMAN could be applied alongside the program’s integration and unit testing
framework [37]. It can also be combined with either static analysis tools that take into
account the program’s configuration and parameters [19], or program fuzzers [40, 51]
to maximize the coverage. Finally, profiles of capability checks may be constructed for
popular applications and shared with the community via crowdsourcing.

Zero-day Capability Abuses. Since the whitelist and decision tree of CAPMAN are
both learned from the normal behavior (capability checks) of a container, CAPMAN
does not require prior knowledge about a vulnerability or exploit. Therefore, similar to
other anomaly detection approaches [23], CAPMAN can potentially detect (and miti-
gate) zero-day attacks involving capability abuses.

Advanced Detection Models. Although its in-kernel design currently limits CAPMAN to
simple models such as whitelist and decision tree, knowledge distillation [74] can help
transfer knowledge from more advanced ML models (which do not fit in the kernel
space) to such tree-based models to further improve the detection accuracy.

Security Trade-offs. The in-kernel design of CAPMAN ensures its efficiency but also
renders it a critical system component. To minimize the risk, we i) implement it with-
out any external dependencies; ii) develop its kernel module with only ~ 800 LoC to
reduce potential bug sites; iii) use only existing kernel functions to update the capabil-
ity sets of a process. A future direction is to integrate CAPMAN as a Linux Security
Module (LSM) hook [60, 73], or leverage eBPF to make it more secure and usable.
Removing Capabilities vs. Denying the Checks. Instead of removing capabilities from
a process’s effective set for mitigation, an alternative is to simply deny the capabil-
ity check by returning ~-EPERM. We choose the former approach to ensure consis-
tency/transparency for user space programs, since some programs may behave differ-
ently depending on whether a capability is in the effective sets, and denying capability
checks at the kernel level could confuse such programs and cause unexpected behaviors.
Evasive Attacks and False Negatives. The stateful models of CAPMAN make it less
sensitive to evasive attacks, such as mimicry [68], since it is harder for attackers to
mimic sequences of capability checks. To reinforce against such attacks, system call
arguments [50] and function call stacks [12] can be added to CAPMAN'’s detection fea-
tures. Another evasive technique is to attack during the container’s booting phase (more
enabled capabilities), which can be prevented by booting containers offline. Finally,
the immutable nature of containers means that CAPMAN s offline phase can occur in
a controlled, attack-free environment to prevent adversarial ML attacks. These can all
help to keep the false negatives of CAPMAN under control. Allocating more resources
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to CAPMAN can also reduce false negatives through more capable detection models
(e.g., deeper decision trees and longer sequences).

Dynamic Workload. CAPMAN currently does not support dynamic changes in the work-
load, and its models require re-training for changed behaviors of the container (e.g.,
software update or new environment). Using incremental learning techniques to dy-
namically update the models over time can address this [54].

Integration with Orchestration Platforms. CAPMAN is not currently integrated with
cloud and container orchestration platforms. While different policies can be selectively
enforced for different containers, updating them requires re-compiling the kernel mod-
ule and keeping track of those policies manually. CAPMAN could benefit from a user
space interface to keep track and add/remove policies from the kernel module (e.g., us-
ing ioct1l), and integration with tools like Kubernetes and Open Policy Agent (OPA)
will allow central and easier management of CAPMAN’s policies.

6 Related Work

Closest to our work, Decap [25] and LiCA [64] employ static analysis to find the nec-
essary and sufficient capabilities set of Linux binaries. Those can be applied to con-
tainers, but need manual efforts to identify all binaries in the container, and attackers
can still abuse the legitimate capabilities. Similarly, ConfigWiz [32], TCLP [38] and
SysCap [75] identify a minimal capabilities set by analyzing the system calls and learn-
ing a mapping to capabilities. The RootAsRole framework [3, 4, 70] implements the
capable tool to identify a binary’s “least privilege” capabilities set, and the sr tool to
enforce them as RBAC policies in Linux. Those tools can effectively reduce the attack
surface of applications, although they do not consider sequence of capabilities nor their
runtime and time-phase separation aspects as addressed by CAPMAN. Minicon [31],
SystemTap’s container_check tool [46], and BCC’s Capable tool [29] all employ a simi-
lar in-kernel capability hooking technique as our solution but do not consider sequences
of capabilities. SELinux [61] and AppArmor [22] can be used to enforce capability re-
strictions for each process at runtime, although they do not directly provide any analysis
and detection features or consider sequences of capability checks like CAPMAN does.

AutoPriv [28] and CapWeave [24] modify a program at compilation time to add
directives for allowing capabilities only when needed. Unlike CAPMAN, these require
access to the application’s source code. PrivAnalyzer [6] measures the efficacy of ca-
pabilities and PeX [77] assesses the soundness of permission checks (including capa-
bilities) in the Linux kernel, while neither provides a solution for mitigating capability
abuses. As capabilities are closely related to system calls, existing works on system call
filtering for containers are also related to our work. SysFilter [7] uses static analysis
to identify the set of system calls required by a program, while Confine [17] extends
the work to containers. SPEAKER [39], Ghavamnia et al. [18], SysPart [56], and Dyn-
Box [76] restrict unnecessary system calls for different phases of a program’s life cycle.
Phoenix [33] and SFIP [5] go even further by monitoring sequences of system calls and
their arguments. All those works cannot prevent capability abuses employing the same
system calls as the application, resulting in more false positives, as shown in Section 4.



7 Conclusion

We proposed CAPM AN, an in-kernel runtime solution for protecting privileged contain-
ers against capability abuses. Specifically, we developed a kprobe-based kernel mod-
ule for CAPMAN to intercept and collect information about capability checks. We also
developed lightweight detection methods that could be deployed inside the kernel to
ensure efficiency, and safe mitigation methods leveraging standard kernel functions and
procedures for altering capabilities. Our implementation and evaluation showed CAP-
MAN effectiveness in mitigating capability abuses, with negligible delay and overhead.
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