
MLFM: Machine Learning Meets Formal Method for
Faster Identification of Security Breaches in Network

Functions Virtualization (NFV)

Alaa Oqaily1, Yosr Jarraya2, Lingyu Wang1, Makan Pourzandi2, and Suryadipta
Majumdar1

1 CIISE, Concordia University, Montreal, QC, Canada
{a oqaily, wang, smajumdar}@encs.concordia.ca

2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada
{yosr.jarraya, makan.pourzandi}@ericsson.com

Abstract. By virtualizing proprietary physical devices, Network Functions Vir-
tualization (NFV) enables agile and cost-effective deployment of network ser-
vices on top of an existing cloud infrastructure. However, the added complexity
also increases the chance of misconfigurations that could leave the services or
infrastructure vulnerable to security threats. To that end, formal method-based
security verification is a standard solution for providing rigorous mathematical
proofs that the configurations satisfy the desired security properties, or the coun-
terexamples (i.e., misconfigurations). Nonetheless, a major challenge is that the
sheer scale of large NFV environments can render formal security verification so
costly that the significant delays before misconfigurations can be identified may
leave a wide attack window. In this paper, we propose a novel approach, MLFM,
that combines the efficiency of Machine Learning (ML) and the rigor of Formal
Methods (FM) for fast and provable identification of misconfigurations violating
security properties in NFV. Our key idea lies in an iterative teacher-learner inter-
action in which the teacher (FM) can gradually (over several iterations) provide
more representative verification results as training data, while the learner (ML)
can leverage such data to gradually obtain more accurate ML models. As a result,
a small portion of the configuration data will be enough to obtain a relatively ac-
curate ML model, which can then be applied to the remaining data to prioritize
the verification of data that are more likely to cause violations. We experimentally
evaluate MLFM against existing verification tools to demonstrate its benefits.

1 Introduction
By decoupling network functions from proprietary hardware devices, Network Func-
tions Virtualization (NFV) allows network services to be implemented as software mod-
ules running on top of generic hardware or virtual machines. This new paradigm allows
service operators to more easily deploy a multi-tenant NFV environment on top of an
existing cloud infrastructure, and it also allows NFV tenants to accelerate the provision-
ing and deployment of their services. Due to such benefits, the popularity of NFV is on
the rise, e.g., in the context of 5G and beyond, NFV has become one of the main tech-
nology enablers for operators to scale their network capabilities on-demand at a lower
cost by virtualizing dedicated physical devices on top of existing clouds [2].

The benefits of NFV may come at the cost of increased complexity. To support
the management and orchestration of multiple network slices belonging to different
tenants on top of the same cloud infrastructure [11], NFV relies on a mixture of vir-
tualization technologies, e.g., a Virtual Network Function (VNF) such as virtual fire-
wall seen at tenant-level may correspond to several virtual machines (VMs) connected
through Software-Defined Networking (SDN) at the cloud infrastructure level [2]. Such
increased complexity may also increase the chance of incorrect (e.g., lack of sufficient
network isolation between different tenants’ network slices [28]) or inconsistent (e.g,.
a virtual firewall VNF specified at the tenant level may be bypassed at the underly-
ing cloud infrastructure level [30]) configurations that could leave the services or in-
frastructure vulnerable to security threats. Therefore, the timely identification of such
misconfigurations is important to ensure the security of NFV environments.

To that end, formal method-based security verification solutions (e.g., [26, 27, 31,
39, 44, 54, 59]) can provide rigorous proofs about the compliance or violation (with
counterexamples) of the configurations w.r.t. given security properties. However, a key
challenge is that the sheer scale of virtual environments can render formal security ver-
ification too costly. For instance, a state-of-the-art security verification tool requires
around 12 minutes to check whether a guest VM can access any SDN controller with
merely 5,000 reachability queries [31]. Such a delay can become much more signifi-
cant under large NFV environments, resulting in a wide attack window during which
the services or infrastructure are left vulnerable. Moreover, the inherent complexity of
formal methods [52] can leave little room for further performance improvement, e.g.,
the aforementioned tool [31] is already heavily optimized (new combined filter-project
operator and symbolic packet representation are added to the back-end verifier).

Motivating example. We further illustrate this issue through an example. The left side
of Figure 1 shows the simplified view of a large NFV environment where two tenants,
Alice and Bob, host their Virtual Network Functions (VNFs). Suppose our goal is to
verify network isolation, i.e., whether any of Alice’s VNFs can reach any of Bob’s
(except what is explicitly allowed). Even the verification of such a simple property (all-
pair reachability) can become expensive as NFV tenants may own a large number of
VNFs. To make things worse, NFV and its underlying cloud infrastructure typically
employ distributed and fine-grained network access control mechanisms (e.g., per-VM
security groups in OpenStack [43]). Consequently, verifying the reachability of two
VNFs/VMs may require inspecting many rules and configuration data scattered among
various data sources (e.g., routing and NAT rules in virtual routers along the route, host
routes of the subnets, and firewall rules implementing tenant security properties [59]).

The right side of Figure 1 contrasts how the collected audit data will be processed
under an existing formal method (FM)-based security verification approach (top) and
under our approach (bottom). The barchart-like pattern illustrates the distribution of
data records in the audit data where red (or black) bars represent pairs of VNFs that
violate (or satisfy) the network isolation property. As the upper pattern shows, a FM-
based approach would verify the audit data as is, i.e., all the VNF pairs will be verified
in the same order as given in the audit data. In contrast, our approach leverages ML to
reorder those data records such that those that (likely) cause violations (the red bars)
will be moved forward, i.e., given a higher priority for verification than others (the

2

Time to find all the violations (FM)

Time to find all the violations (MLFM)

ML training

Le
ar

ne
r

ML model

-+ -
+ - -+

sample

Te
ac

he
r

Alice VNFs should be isolated
from Bob’s VNFs

Alice

Subnet_A

Bob

Subnet_B
Virtual
infrastructure

Alice’s VNFs Bob’s VNFs Audit data

Verification of audit data

ML application and verification of data
records based on identified verification order

Fig. 1: Motivating example

black bars). Consequently, the verification can identify most of the violations in much
less time (even after taking into account the time taken by ML training).

To that end, our main idea is to employ an iterative teacher-learner interaction, as
depicted in the middle of Figure 1. In each iteration, the teacher (FM) first selects rep-
resentative data records from the audit data, and then provides their verification results
as training data to the learner (ML). Using such data, the learner (ML) trains an ML
model, which is then given back to the teacher (FM) to be tested for identifying more
representative data records (e.g., false positives and false negatives) in the next itera-
tion. Over several iterations, such an interaction between the teacher and learner will
enable a relatively accurate ML model to be trained using only a small portion of the
audit data. The ML model can then be applied to reorder the remaining data for faster
identification of violations. More specifically, our main contributions are as follows.

– To be best of our knowledge, MLFM is the first approach that combines FM with
ML to have the best of both worlds (i.e., the rigor of FM which is essential for
proving security compliance, and the efficiency of ML which is critical for a large
NFV environment) for prioritizing verification tasks in NFV. Although we focus on
NFV, we believe such an approach can potentially find other applications.

– To realize MLFM, we design an iterative teacher-learner interaction methodology
with a detailed algorithm. We implement the methodology based on a constraint
satisfaction problem solver, namely, Sugar [55], several popular ML algorithms
(decision tree, random forest, support vector machine, and XGBoost), and sam-
pling techniques (uncertainty sampling and query-by-committee) borrowed from
the active learning literature [50] for identifying representative data records.

– We experimentally evaluate MLFM for two different use cases (one aims at the
shortest verification time, and the other at the completeness of the result). The
experimental results demonstrate the benefits of MLFM through identifying vio-
lations significantly faster than the baseline FM method (e.g., identifying 80% of
violations in 28% of time), and further improving the efficiency of a state-of-the-art
security verification tool [31] (e.g., identifying 80% of violations in 57% of time).
The remainder of the paper is organized as follows. Section 2 provides the back-

ground and threat model. Section 3 details the MLFM methodology. Section 4 describes
our implementation. Section 5 presents the experiments. Section 6 reviews the related
work. Finally, Section 7 discusses limitations and concludes the paper.

3

2 Preliminaries

This section provides essential background on NFV, discusses NFV security properties,
and defines our threat model.
NFV Background. NFV is a network architecture concept that decouples network
functions (e.g., routers, firewalls, and load balancers) from proprietary hardware de-
vices and virtualizes them as Virtual Network Functions (VNFs) running on top of
existing cloud infrastructures [2]. Figure 2 presents a simplified view of the ETSI NFV
reference architecture [2] (left), and an example NFV deployment corresponding to our
motivating example (right). First, the resource management level conceptualizes the
virtual resources such as subnets and VNFs. Second, the underlying virtual infrastruc-
ture level implements those virtual resources using virtual networking elements, such
as virtual switches (e.g., OVS 1), VLANs (for communications within the same server),
VxLANs (for communications between servers), and network ports, running on top of
physical servers (e.g., Server 1). In this paper, NFV configuration data stored in rela-
tional databases will be our main inputs.

Hypervisor

Virtual
resources

NFVI block

Service
description

VNF block

EMS
VNF

Hardware

ETSI architecture
(simplified view)

Alice Resource
management

level

Virtual
infrastructure

 level

Subnet_BSubnet_B

VNF_101

Subnet_ASubnet_A

Bob

VNF_2

Server_1

NFV deployment

vNetwork

VLAN_1

VXLAN_1

VNF_31

OVS_1
Port_10

Server_23

VNF_101 VNF_46

OVS_2
Port_101 Port_46

VNF_46VNF_10 VNF_31

VNF_10

Network path Connection
OwnershipCross-level mapping

VNF_10

VLAN_1

VXLAN_1

VLAN_2

VXLAN_2

Fig. 2: ETSI NFV reference architecture [2] (left) and an example NFV deployment
corresponding to the motivating example (right)

NFV Security Properties. Various security properties can be defined to verify the com-
pliance of NFV environments w.r.t. standards (e.g., ETSI [2] and IETF-RFC7498 [45])
or NFV tenants’ requirements. Table 1 (in Appendix) shows some example NFV se-
curity properties which we have previously identified [44]. Our approach can support
other security properties as long as they can be verified using the chosen formal method
tool (e.g., Sugar [55] used in this paper can handle most properties formulated using
standard first-order logic). To make our discussions more concrete, we describe two
example properties (which will be needed later).
Example 1. First, the property mapping unicity VLANs-VXLANs ensures the logic seg-
regation between different tenants’ virtual networks through the unique assignment of
VxLAN (communications between servers) identifier to each VLAN (communications
within one server). Figure 3 (left) depicts a violation of this property (the shaded nodes
show VLAN 1 is mapped to both VXLAN 10 and VXLAN 16 on Server 1). Note this
property can be verified for each VLAN separately. Second, the property no VNFs co-
residence prevents a tenant’s VNFs to be placed on the same physical server with VNFs

4

of non-trusted tenants (e.g., due to concerns over potential side channel threats). Figure
3 (right) shows a violation of this property where Alice’s VNF 101 and Bob’s VNF 46
on both placed on server S 23. In contrast to the previous property, verifying this prop-
erty could involve more records (all the VNFs of this tenant and the non-trusted tenants).

Server_1

VNF_10

Port_101

VLAN_1

VXLAN_10 VXLAN_16

VLAN_12

VXLAN_5

Open-
VSwitch_1

VNF_31

Port_104

Alice

VNF-1 VNF-2 VNF-1000

HasRunningVNF

VNF-101… …

S-5 S-9 S-23 S-3

IsLocatedAT

DoesNotTrust
Bob

VNF-1 VNF-2 VNF-100VNF-46… …

S-21 S-11 S-23 S-2

IsLocatedAT

HasRunningVNF

Fig. 3: Two example NFV security properties: Mapping unicity VLANs-VXLANs (left)
and No VNFs co-residence (right) (shaded nodes indicate violations)

Threat Model and Assumptions. Similar to most existing security verification ap-
proaches, our scope is limited to attacks that (directly or indirectly) cause violations
to given security properties, and we assume our solution is deployed by the owner of
the NFV environment who has access to the logs, databases, and configuration data
needed for the security verification (and the integrity of those input data is protected
with trusted computing techniques (e.g., [49])). Under such assumptions, our in-scope
threats include both external attackers who exploit existing vulnerabilities in the NFV
environment to violate the security properties, and insiders such as NFV operators and
tenants who cause misconfigurations violating the properties, either through mistakes
or by malicious intentions. Conversely, out-of-scope threats include attacks that do not
cause any violation of the security properties, and attacks launched by adversaries who
can erase evidences of their attacks by tampering with the logs, databases, etc.

We assume that the formal specification of security properties as well as the formal
verification approach itself are correct and sound. As a security verification solution,
our approach can only identify the violation of given security properties, but is not de-
signed to attribute such a violation to the underlying vulnerabilities (responsibility of
vulnerability analysis) or specific attacks (responsibility of intrusion detection). Sim-
ilar to most existing machine learning approaches, we assume that a dataset required
for verifying given security properties has been collected. However, we do not require
labeled data, which can be difficult to obtain in a real world NFV environment, as the
data records will be labeled by the teacher (formal method) in our approach (option-
ally, a small amount of labeled data records would be helpful for training an initial
ML model to speed up the iterative approach). As with most security applications (e.g.,
spam or intrusion detection), we assume the dataset is unbalanced (i.e., the majority of
data records belong to the compliance class w.r.t. the security property), and we make
additional efforts in designing our approach to address this issue.

3 Methodology

This section first presents an overview of our approach, followed by details on the iter-
ative teacher (FM)-learner (ML) interaction and the MLFM algorithm.

5

3.1 Overview

We propose a machine learning-guided formal security verification approach, namely,
MLFM, for fast and provable identification of data records that violate a given security
property in NFV. First, the ML training stage employs an iterative teacher (FM)-learner
(ML) interaction to train an ML model using only a small portion of the audit data.
Second, the ML application stage applies the ML model to reorder the remaining audit
data, such that those that are more likely to violate the property will be verified first.
More specifically, Figure 4 depicts our approach as follows.

Fig. 4: Overview of the MLFM approach

The ML Training Stage. As Figure 4 (left) shows, in each iteration of the teacher-
learner interaction, the teacher first applies a sampling method to select a small data
sample of fixed size from the audit data (shown as Sampler in the figure) after applying
the ML model received from the learner in the previous iteration (an initial ML model
is provided for the first iteration). The teacher then verifies the data records inside this
data sample, and labels each record based on its verification result (shown as Formal
verifier in the figure), and sends the labeled data sample to the learner. The learner then
combines this newly received data sample with the previously received data samples
to train a new ML model to be sent back to the teacher. This iterative interaction ends
when reaching a predefined condition, e.g., a fixed iteration count, or lack of significant
change in the accuracy of the model between two consecutive iterations.
The ML Application Stage. As Figure 4 (right) shows, the final ML model from the
ML training stage is applied to the remaining audit data (i.e., the data not used for train-
ing) in order to identify data records that are more likely to violate the given security
property, namely, the “to be verified” subset, which will be given a higher priority for
verification. On the other hand, the “not to be verified” subset will either be verified
afterwards, or not verified at all, depending on the use cases (detailed in Section 3.3).

3.2 Iterative Teacher (FM)-Learner (ML) Interaction

In the following, we provide more details about the key methodology of our approach,
i.e., the iterative teacher (FM)-learner (ML) interaction.
Sampling (Teacher). The sampler component of the teacher is designed to select repre-
sentative data records from the audit data in order for the learner to effectively enhance
the ML model over each iteration. Choosing the right data records is important because
they could cause either increase or decrease in the accuracy of the next ML model, e.g.,
data records having the same (redundant) information or those with the same label may
cause the model to either not improve, or become biased towards the majority data,

6

respectively. Our approach borrows sampling strategies (such as uncertainty sampling)
from the active learning literature [50]. Although active learning has a different focus
(it aims to reduce the effort of human experts in labeling the data, whereas no human
expert is involved in our case), its sampling strategies are applicable to our approach,
because they are also designed to better represent the characteristics of the property
being analyzed such that an ML model can be trained with minimal labeled data.

Example 2. The left side of Figure 5 shows an excerpt of the audit data corresponding
to the previous Example 1. Using uncertainty sampling, the sampler (inside the teacher
block) selects a sample of size (m = 2) as the (shaded) record pairs (1, 3) and (6, 4).

Fig. 5: An example of the iterative teacher (FM)-learner (ML) interaction

Verification (Teacher). The formal verifier component is responsible for labeling the
selected sample of data records (which will later be sent to the learner as training data).
Labeling here means to annotate the data records with an extra field representing their
classes, i.e., whether they are compliant with, or violate, the security property. To obtain
such labels, the formal verifier performs formal verification by instantiating the security
property (e.g., formulated using first-order logic) with the data records.

Example 3. Following Example 2, Figure 5 shows how the formal verifier labels the se-
lected sample by verifying the No VNFs co-residence property (see Section 2). Specifi-
cally, the formal verifier finds that the pair (1, 3) violates the property (i.e., Alice’s VNF
(VNF 101) co-resides with Bob’s VNF (VNF 46) on the same server (S-23)), and thus
labels it as “+”. The other pair (6, 4) is labled as “-”, as it does not violate the property.
Records Selection (Teacher). Next, the teacher applies the ML model from the pre-
vious iteration (received from the learner) to the labeled sample of data records. Intu-
itively, this allows the teacher to validate this previous ML model (by comparing its
results to the labels provided by the formal verifier) and provide the “mistakes” (false
positives and false negatives) as more representative training data to the learner. Specif-
ically, as the ML model from the previous iteration also classifies the data records into
two classes, by comparing its results to the ground truth, i.e., the labels assigned by
the formal verifier component, the teacher can identify those records that have been
correctly classified (i.e., true positives (TPs)) and those incorrectly classified (i.e., false

7

negatives (FNs) and false positives (FPs)). Then, the teacher adds the TP, FN, and FP
records to a new dataset D, which is the training dataset to be sent to the learner. Finally,
if the number of records in D is still less than the desired size of the sample (m), the
teacher repeats the aforementioned steps as an inner-iteration until it has accumulated
totally m records in D. Note that the rationale for selecting (TP, FP, FN) records is
twofold. First, as the positive class (i.e., violations) is generally smaller due to data im-
balance, adding TP and FN records can augment the positive class to reduce the bias in
training [41]. Second, the FN and FP records are incorrectly classified by the previous
ML model and thus may contain more useful information for the learner to improve the
accuracy of its next model.
Example 4. Following Example 3, Figure 5 shows a decision tree model (DT0) received
from the last iteration is applied to the two pairs of records (1, 3) and (6, 4). The de-
cision tree (DT0) predicts “+”, if the VNF2-ID value is no smaller than the VNF1-ID
value; otherwise, it is predicted as “-”. Therefore, both (1, 3) and (6, 4) are predicted as
“-”. Comparing such results to the labels previously assigned by the formal verifier (see
Example 3), we can see the pair (1, 3) is FN and should be added to the dataset D (and
deleted from the audit data), whereas (6, 4) is TN and should not be added. Finally, as
the size of D is less than the required size (m=2), we will repeat the inner-iteration.
ML Model Building (Learner). Once the teacher’s dataset D reaches the required size
m, the sample it contains is sent to the learner (D is then emptied in preparation for the
next iteration). The learner adds the received sample to its existing training data (i.e.,
the collection of all previous samples), and utilizes this newly enriched training data
to build a new ML model. The ML model is sent back to the teacher if the stopping
condition (e.g., the specified number of interactions) has not been reached; otherwise,
the interaction ends and the final ML model is given to the next (ML application) stage.
Example 5. Following Example 4, the lower part of Figure 5 shows that, once the
teacher’s inner-iteration ends, a sample of size two is sent to the learner. The learner
adds the received sample to the existing training data (T) while the teacher empties its
dataset (D). The new training data (T) is then used to build a new decision tree model
(DT1), which is more accurate than DT0.

3.3 MLFM Algorithm and Use Cases

Algorithm 1 more formally states our approach. The inputs to the algorithm include the
unlabeled audit data, the security property, and the parameters. The initial set of training
data allows a system user to influence the algorithm with his/her domain knowledge by
manually selecting/labeling data records (otherwise, the data can simply be randomly
selected from the audit data and labeled using the formal verifier).

The algorithm has an outer iteration (Lines 2-9) which first builds a new sample
through performing the inner iteration (Lines 3-7), and then adds this new sample to
the existing training data (Line 8) to train a new ML model (Line 9). The outer iteration
is repeated for a fixed number (provided as an input parameter) of times. The final ML
model is then applied to reorder the remaining audit data before verifying it (Line 10).
The union of all the verification results (Lines 5 and 10) is the final output.

The inner iteration builds a sample D of size m as follows. First, it selects a sample
of size m from the audit data by following a given sampling strategy (Line 4). Although

8

not shown in the algorithm, depending on the sampling strategy being used, this step
may involve other parameters such as the current ML model (e.g., with uncertainty sam-
pling [50]) or the training data (e.g., with Query-By-Committee (QBC) sampling [50]).
Second, the sample is verified and labeled (with the verification results) using a formal
verifier (Line 5). Third, the current ML model is applied to the sample, and the results
are compared to the labels (verification results) to identify and add the (TP, FP, FN)
records to D (Line 6). Fourth, D is removed from the audit data to avoid being selected
again (Line 7). We repeat the above steps until D contains at least m records.

Algorithm 1: The MLFM algorithm
1 Inputs: Audit data (AD), security property (SP), initial training data (T0), initial model

M0 = TrainClassifier(T0), per-iteration sample size (m), and iteration count (n)
/* Outer-iteration */

2 for i = 0, i < n, i++ do
/* Inner-iteration */

3 while | D |< m do
4 S = SelectSample(AD,m)
5 Si= VerifyAndLabel(S, SP)
6 D = D ∪ TP (Si,Mi) ∪ FP (Si,Mi) ∪ FN(Si,Mi)
7 AD = AD \D
8 Ti+1 = Ti ∪D; D = φ
9 Mi+1 = TrainClassifier(Ti+1)

10 return Verify(Reorder(AD,Mn)) ∪ (
⋃

i Si)

Complexity Analysis. The worst case complexity of the MLFM algorithm is O(n ·(m ·
(Ts + Tv1) + Tt) + Tv2) where Ts, Tv1 , Tt, and Tv2 are the time for sampling (Line
4), verifying m records (Line 5), training (Line 9), and verifying remaining records
(Line 10), respectively. Such times would depend on specific algorithms, e.g., Ts under
uncertainty sampling [50] can be estimated as O(| AD |), since this strategy requires
applying the current ML model on the audit data AD. Tv1 and Tv2 under a CSP solver is
known to be exponential in the number of variables of the instantiated security property
[14]. Finally, Tt under a decision tree classifier is O(na ·nt · log2(nt)) [47] where na is
the number of attributes and nt the size of training data (i.e., O(n ·m)). We will further
study the efficiency of the algorithm through experiments in Section 5.

Use Cases. Depending on how the remaining data is verified in Line 10 of the MLFM al-
gorithm, our approach can be applied for two different use cases. First, MLFM running
in the partial verification case will stop after verifying all the “to be verified” records
(which would appear first after the reordering). This can be useful when the system
user wants to find violations as quickly as possible (but not necessarily to find all the
violations), and our objective in the training is to find an ML model that is the most
accurate (since the mis-classifed violations would not be verified, as further explained
in Section 5). Second, MLFM in the priority-based verification case will verify all the
records (with the “to be verified” records verified first). Our objective of the training
is to find an ML model that incurs the least overall verification time with acceptable
accuracy (since the mis-classified records will still be verified eventually).

9

4 Implementation
In this section, we describe the architecture and details of our implementation.
System Architecture. Our implementation of MLFM (shown in Figure 11 in Appendix
due to space limitation) interacts with an OpenStack/Tacker [8]-based NFV environ-
ment to collect audit data. The system also interacts with a user to obtain other inputs,
such as the security property to be verified, the formal verifier and the ML model to
be applied, and the system parameters (the number of iterations and the sample size, as
detailed in Section 3.3). Finally, the system returns an audit report to the user.
Data Collection and Processing. We implement this module using Python and Bash
scripts to collect audit data from multiple sources including logs and configuration
databases or files. For instance, to verify the No VNFs co-residence property, the module
collects the identifiers of VNFs from Tacker and Nova databases [7], their correspond-
ing owners (from Nova database), and the identifiers of servers hosting those VNFs
(from Nova database). As the audit data are usually scattered among different com-
ponents of the NFV environment and stored in different formats, the data must first be
pre-processed. For instance, to verify the mapping unicity VLANs-VXLANs property, the
data collected from OpenFlow tables of the OVS databases has unnecessary fields (e.g.,
cookie and priority) that must be filtered out. Also, the port and vlan vid fields must be
correlated to create the relation tuples IsAssignedVLAN(ovs,port,valn) for the verifica-
tion. Finally, such filtered and correlated data must be converted into the corresponding
input formats required by the formal verifier as well as for the ML training.
MLFM Manager. We implement this module in Python to manage and coordinate the
interactions between other system modules for performing data collection and process-
ing, data sampling, formal verification, ML training, etc., as described in Section 3.
ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open source
ML library written in Python) to implement this module. We select decision tree, Sup-
port Vector Machine (SVM), and Random Forest (RF) models as they are among the
most commonly used supervised classifiers, and are computationally more efficient
compared to other classifiers such as K-Nearest-Neighbor (KNN) [40]. We also se-
lect XGBoost classifier [15], a scalable tree boosting system with a simpler structure
using less resources than most other ML models, which has recently seen wide appli-
cation for its high accuracy and low false positive rate [16, 42]. As our main aim is to
reduce the overall delay before violations can be identified, we do not consider deep
learning models as they are well known for higher complexity and longer training time
compared to traditional ML models [34].
Sampler. We employ the modAL framework [17] to implement sampling strategies in
this module. The modAL is an active learning framework for Python3, built on top of
Scikit-learn [29], which allows to rapidly create active learning workflows with flexibil-
ity [17]. We select the uncertainty sampling and query-by-committee (with DT, SVM,
and RF for members of the committee) sampling strategies in our implementation, as
those are the most computationally efficient ones compared to other strategies [50].
Formal Verifier. We formalize the security properties together with the audit data as
a Constraint Satisfaction Problem (CSP), a time-proven technique for expressing com-
plex problems. Using CSP allows the user to specify a wide range of security properties

10

(due to its expressiveness) in a relatively simple manner (as CSP enables to uniformly
present the audit data as well as the security properties, and in a comprehensible and
clean formalism, such as first order logic (FOL) [12]). Moreover, there exist many pow-
erful and efficient CSP solver algorithms to avoid the state space traversal [48], which
can make our approach more scalable for large NFV environments.

Once formulated as a CSP problem, the security verification is performed using
Sugar [55], a well-established SAT-based constraint solver. We choose Sugar as it is an
award-winning solver of global constraint categories (at the International CSP Solver
Competitions in 2008 and 2009 [9]). Sugar solves a finite linear CSP by translating it
into a SAT problem using order encoding method, and then solving the translated SAT
problem using the MiniSat solver [18], which is an efficient CDCL SAT solver partic-
ularly effective in narrowing the search space [23]. Adapting our MLFM framework to
other verification methods (such as theorem proving, model checkers, temporal logic,
and Datalog) based on the needs of verification tasks is regarded as a future work.

Example 6. The predicate that corresponds to the negation of the No VNFs co-residence
property is formulated (by the system user, done only once) as Formula 1 (left), and a
predicate instance returned by Sugar to indicate violation is shown as Formula 2 (right)
(i.e., both Alice and Bob have VNFs co-residing on the same server S 23).

∀t1, t2 ∈ Tenant, ∀vnf1, vnf2 ∈ VNF, ∀s1, s2 (1)

∈ Server : HasRunningVNF(t1, vnf1) ∧ HasRunn−
ingVNF(t1, vnf1) ∧ DoesNotTrust(t1, t2)∧
IsRunningOn(vnf1, s1) ∧ IsRunningOn(vnf2, s2)

∧(s1 == s2)

HasRunningVNF(Alice, VNF 101) ∧ HasRunn− (2)

ingVNF(Bob, VNF 46) ∧ DoesNotTrust(Alice,

Bob) ∧ IsRunningOn(VNF 101, S 23) ∧ IsRun−
ningOn(VNF 46, S 23) ∧ (S 23 == S 23)

5 EXPERIMENTS
This section describes the datasets and experimental settings, and presents our results.

5.1 Datasets and Experimental Settings

We first describe the implementation of our NFV testbed and data generation using the
testbed, and then detail the experimental settings.
NFV Testbed Implementation. We choose to build our NFV testbed using Open-
Stack [7] with Tacker [8] mainly due to their growing popularity in real world [10]
(other options such as Open Baton [4], OPNFV [5], and OSM [6] are still at their devel-
opment stages). More specifically, we rely on the latest version OpenStack Rocky [7]
for managing the virtual infrastructure, and we employ Tacker-0.10.0 [8], an official
OpenStack project, to deploy virtual network services. Our NFV testbed consists of 20
tenants and 200 VNF forwarding graphs (VNFFGs), with each tenant owning around
10 VNFFGs and each VNFFG consisting of about 10 VNFs.
NFV Data Generation. To evaluate the performance of MLFM under large scale NFV
environments, we would require a large scale NFV deployment. However, to the best of
our knowledge, there do not exist any publicly available large-scale NFV deployment
datasets. Therefore, we develop Python scripts to automatically generate various VNF
Descriptors (VNFDs) and VNFFG Descriptors (VNFFGDs), which are then uploaded

11

(also called on-boarding) to our NFV testbed to deploy different network services and
generate large scale NFV datasets. We randomize parameters of those descriptors to
ensure diversity in the generated data (e.g., the number of network ports per VNF, the
flavor of each VNF, the number of VNFs in each Network Function Path (NFP), and
the number of NFPs in each VNFFG). Our first dataset, DS1, contains 12,500 audit data
records for verifying the mapping unicity VLANs-VXLANs property (P1 henceforth),
and our second dataset, DS2, contains 25,000 records for verifying the no VNFs co-
residence property (P2 henceforth). Each dataset contains around 10% of (uniformly
distributed) records that violate the corresponding property.

Experimental Setting. All experiments are performed on a SuperServer 6029P-WTR
running the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze
3104 CPU @ 1.70GHz and 128GB of RAM without GPUs. All the experiments are
performed using Sugar [55] as the formal verifier (unless mentioned otherwise) and
Python 3.6.9 with Scikit-learn 0.24.1 ML packages for the ML method. For all the
experiments, we use the default parameters for the ML models. Each experiment is
repeated 1,000 times to obtain the average results.

5.2 Experimental Results

Best Performing Combination of ML Model/Sampling Method. The first set of the
experiments aims to find the best performing combination of ML model and sampling
method (as components of MLFM), from both the accuracy and time performance point
of views. Specifically, Figure 6 shows the recall and F1 score results for different com-
binations of ML models (DT, RF, SVM and XGBoost, trained on 20% of each dataset)
and sampling methods (random sampling, query-by-committee (QBC), and uncertainty
sampling) for both security properties (P1 and P2) and datasets (DS1 and DS2). The
results in Figures 6 (a) and (b) show that the combination of XGBoost and uncertainty
sampling allows MLFM to achieve the highest recall (0.97) and F1 score (0.97) for
security property P1. On the other hand, SVM combined with any of these sampling
methods has the lowest F1 score (0.80) (i.e., less effective in identifying both classes),
and RF with uncertainty sampling has the lowest recall (0.82) (i.e., less effective in
identifying the violations). Similarly, Figure 6 (c) shows that XGBoost with uncertainty
sampling also has the best recall (0.783) for security property P2. However, as Figure
6 (d) shows, XGBoost has the best F1 score (0.981) when paired with QBC sampling.
Nonetheless, as identifying the violations is more important to MLFM, XGBoost with
uncertainty sampling is considered the best option for both P1 and P2.

DT RF SVM XGBoost
ML model

0

0.5

1

R
ec

al
l

Random QBC Uncertainty

(a) Recall for P1

DT RF SVM XGBoost

ML model

0

0.5

1

F1
 s

co
re

Random QBC Uncertainty

(b) F1 score for P1

DT RF SVM XGBoost
ML model

0

0.5

1

R
ec

al
l

Random QBC Uncertainty

(c) Recall for P2

DT RF SVM XGBoost
ML model

0

0.5

1

F1
 s

co
re

Random QBC Uncertainty

(d) F1 score for P2

Fig. 6: Recall and F1 score for combinations of ML models and sampling methods,
trained on 20% of dataset DS1 for property P1 (a and b) and on DS2 for P2 (c and d)

12

Figure 7 shows how the combinations of ML models and sampling methods affect
the running time (in minutes) of MLFM (including both the ML training and applica-
tion stages). As explained in Section 3.3, the partial verification use case aims to find
the majority of violations in the least time. To that end, Figure 7 (a) seems to suggest
that SVM paired with uncertainty sampling is the best option as it requires the least
time (15.14 minutes). However, upon further investigation, this is not really the case,
because the lower time consumption is mainly due to its inaccuracy (it misses more
violations and thus, similar to most SAT solvers, Sugar incurs less time when there are
less violations to find [55]). Therefore, considering both the accuracy (Figure 6 (a)) and
the running time, XGBoost with uncertainty sampling seems to be the best option (with
the second least time) for partial verification under P1. Figure 7 (b) shows that XGBoost
with uncertainty sampling is the best option for priority-based verification for P1, as it
requires the least time (accuracy is less important in this use case as all the records will
be verified eventually, as explained in Section 3.3). Similarly, Figures 7 (c) and (d) show
XGBoost with uncertainty is also the best combination under P2 for both use cases.

DT RF SVM XGBoost
ML model

0

20

40

60

80

T
im

e
(m

)

Random QBC Uncertainty

(a) Partial verification
time for P1

DT RF SVM XGBoost
ML model

0

20

40

60

80

T
im

e
(m

)

Random QBC Uncertainty

(b) Priority-based
verification time for P1

DT RF SVM XGBoost
ML model

0

20

40

60

80

T
im

e
(m

)

Random QBC Uncertainty

(c) Partial verification
time for P2

DT RF SVM XGBoost

ML model
0
1
2
3
4
5

T
im

e
(h

)

Random QBC Uncertainty

(d) Priority-based
verification time for P2

Fig. 7: Running time of MLFM for combinations of ML models and sampling methods,
with 20% of training data under P1 (a) (b), or P2 (c) (d), for both use cases

Best Performing Parameters m and n. In this set of experiments, we aim to find the
optimal parameters of MLFM, i.e., the number of iterations n and the sample size m
(see Section 3.3), in terms of the running time for priority-based verification, and also
in comparison to the baseline approach (i.e., directly applying the formal verifier to
the entire dataset). Specifically, Figure 8 (a) shows how changing the sample size m
with a fixed number of iterations (n = 10) impacts the time, with the best performing
model (i.e., XGBoost with uncertainty sampling) under property P1. The results show
that MLFM takes less time (<1 hour) than the baseline approach (around 1.6 hours) in
all cases. As more training data is used (through larger samples), the time of MLFM
initially decreases due to more accurate ML models, and it reaches the lowest value
(0.417 hr, or around 25% of the time of baseline) while using about 20% of the dataset
for training. The time starts to increase afterwards, since the time needed to verify
larger samples in the training stage becomes dominant (compared to the time saved
in the application stage). Figure 8 (b) shows how changing the number of iterations n
with a fixed sample size (m = 250) impacts the time. Similarly, MLFM takes less time
than the baseline approach in all cases. The optimal percentage of training data is also
around 20% (where n = 10). However, afterwards the time of MLFM stays lower than
in the previous experiment, which shows that increasing the number of iterations is a
safer choice (than increasing sample size) for increasing the training data. Figures 8
(c) and (d) show similar trends for property P2 (the longer time is due to more records
involved in verification, as shown in Section 2).

13

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Percentage of training data

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

T
im

e
(h

)

Baseline MLFM

(a)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Percentage of training data

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

T
im

e
(h

)

Baseline MLFM

(b)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Percentage of training data

0.5
1

1.5
2

2.5
3

3.5

T
im

e
(h

)

Baseline MLFM

(c)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Percentage of training data

0.5
1

1.5
2

2.5
3

3.5

T
im

e
(h

)

Baseline MLFM

(d)

Fig. 8: Running time of MLFM vs. the baseline (FM only) under property P1 (a) and
(b) or P2 (c) and (d), using different percentages of training data either by changing the
sample size m (a) and (c) or by changing the number of iterations n (b) and (d)

Comparing MLFM to Other Approaches. In this set of experiments, we compare
the performance of MLFM to both the baseline approach (i.e., directly applying the
formal verifier, Sugar [55]) and a state-of-the-art security verification tool, NOD [31] 3.
All experiments use the best performing model and parameters (i.e., XGBoost with
uncertainty sampling, 20% training data, m = 250, and n = 10).

First, Figures 9 (a) and (b) show the time (in minutes) needed by the baseline ap-
proach (upper curve) and by MLFM (lower curve) for identifying different percentages
of violations under properties P1 (a) and P2 (b), respectively. The figures depict both
the priority-based verification use case (the entire curve) and the partial verification use
case (part of the curve before the dashed line). Specifically, Figure 9 (a) shows that
MLFM outperforms the baseline throughout the percentages, e.g., for partial verifica-
tion, MLFM can identify 88% of the violations in around 23.3 minutes, which takes
the baseline 82.7 minutes. Similarly, Figure 9 (b) shows that MLFM outperforms the
baseline in case of partial verification for property P2, where it identifies 82% of the vi-
olations in about 53.3 minutes, while the baseline takes almost 2.4 hours. However, in
case of priority-based verification (after the 82%) for property P2, MLFM takes more
time than the baseline. The reason lies in the difference between the two properties.
As explained in Section 2, unlike P1 (which can be verified for each VLAN indepen-
dently), P2 may involve all the VNFs of a tenant, which means the remaining 18% of
violations can only be identified using the baseline approach. Fortunately, there exists
an alternative solution, i.e., we run MLFM and the baseline in parallel, and terminate
MLFM as soon as the baseline finishes (as we already have all the results). As Figure 9
(b) shows, this would allow MLFM to identify around 86% of violations faster than the
baseline, while bounding the overall running time by what is taken by the baseline.

Next, Figures 9 (c) and (d) show the tradeoff between the running time (in minutes)
and the recall values of partial verification (i.e., the percentage of violations identified
by the end of partial verification) for P1 (c) and P2 (d). Both figures show similar results,
i.e., while the baseline naturally requires more time for identifying more violations,
MLFM can achieve a high recall value of 0.98 (P1) and 0.9 (P2) (by increasing the
percentage of training data from 10% to 20%) with negligible change in running time
(the difference will be greater for verifying the remaining records, as shown in Figure 8).

Finally, Figures 10 (a) and (b) show the time (in minutes) needed by NOD [31]
(lower curve) and MLFM integrated with NOD (upper curve) for identifying different
percentages of violations under the virtual network reachability property [31] (as this

3 Among existing security verification tools, we do not compare to NFVGuard [44] as it actually
forms the basis of our verification component, and we do not compare to TenantGuard [59] as
it is based on custom algorithms instead of formal method.

14

20% 40% 60% 80% 100%
Percentage of violations identified

0
20
40
60
80

100

T
im

e
(m

)

Baseline MLFM

(a)

20% 40% 60% 80% 100%
Percentage of violations identified

0
1
2
3
4
5

T
im

e
(h

)

Baseline MLFM

(b)

0.8 0.85 0.9 0.95 0.98
Recall

0
20
40
60
80

100

T
im

e
(m

)

Baseline MLFM

(c)

0.7 0.75 0.8 0.85 0.9

Recall

40

80

120

160

200

T
im

e
(m

)

Baseline MLFM

(d)

Fig. 9: The time (in minutes) for identifying different percentages of violations by
MLFM and the baseline for P1 (a) or P2 (b). The tradeoff between running time and
recall values of MLFM and the baseline for partial verification of P1 (c) or P2 (d)

property is similar to P2, we run MLFM in parallel with NOD, as discussed above).
We use the benchmarks provided in [31] to create two datasets with 25,000 and 50,000
reachability pairs, respectively, and around 10% of violations injected randomly. The
results show that MLFM can help NOD to identify around 80% (a) and 81.3% (b) of
violations, respectively, in less (57% and 65%, respectively) time.

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Percentage of violations identified

5
15
25
35
45
55
65

T
im

e
(m

)

NOD MLFM-NOD

(a)

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Percentage of violations identified

0

40

80

120

160

200
T

im
e

(m
)

NOD MLFM-NOD

(b)

Fig. 10: The time (in minutes) for identifying different percentages of violations by
NOD [31] and by MLFM integrated with NOD, using 25,000 (a) and 50,000 (b) records

6 RELATED WORK

Most existing solutions related to security verification for NFV (e.g., [20, 21, 39, 54, 56,
58, 60, 61]) focus on the verification of service function chaining (SFC). Those works
employ either custom algorithms (such as [20, 58, 60]), graph-based methods (such as
[21, 56, 61]), or formal methods (such as [39, 54]). Unlike those existing works (which
focus on the SFC only), our previous work, NFVGuard [44], aims to verify the entire
NFV stack (including both SFC and underlying infrastructure, and their consistency)
using formal method. However, the increased scope also leads to increased complexity
and longer verification time, which has motivated us to propose MLFM.

Besides NFV, there also exist security verification solutions for other virtual in-
frastructures, such as cloud and SDN (e.g., [27, 31–33, 37, 38, 59]), including formal
method-based ones [31–33, 37]. Unlike MLFM, most such solutions do not specifically
address the delay in verification (so they may benefit from MLFM in that aspect), with
the exception of NOD [31] which is optimized for large applications (our experiments in
Section 5 show it can further benefit from MLFM). In contrast to formal method, custom
algorithms (e.g., [27] and [59]) may enjoy improved efficiency for specific properties
but they generally lack the level of expressiveness of formal method-based approaches
(including MLFM). Also designed to reduce verification time, the proactive approach

15

(e.g., [35, 36]) performs the verification in advance based on predicted events, which is
parallel to, and can be integrated with, our approach.

There exist works that combine machine learning and formal method in other con-
texts, such as automated program verification (for synthesizing invariants used to ver-
ify the correctness of a program, e.g., [19, 22, 46, 57]). In particular, Ezudheen et al.
[19] develop learning-based algorithms for synthesizing invariants for programs that
generate Horn-style proof constraints. Garg et al. [22] propose the ICE-learning frame-
work for not only taking (counter-)examples but also handling implications. Ren et al.
[46] propose a method based on selective samples to improve the efficiency of invari-
ant synthesizing. Finally, Vizel et al. [57] study the relationship between SAT-based
Model Checking (SAT-MC) and Machine Learning-based Invariant Synthesis (MLIS).
Although the goals are very different (efficient verification vs. invariant synthesizing),
our teacher-learner approach is similar to those existing works, with a key difference
being that we additionally employ the sampling strategies from the active learning lit-
erature [50] to more effectively identify representative samples.

7 CONCLUSION

We have presented MLFM, a novel approach to security verification in NFV that could
combine the rigor of formal methods with the efficiency of machine learning for faster
identification of security violations. Specifically, we designed an iterative approach for
the teacher (FM) to gradually provide more representative data samples, such that the
learner (ML) could train an ML model using a small portion of the data; the ML model
was then applied to the remaining data to prioritize the verification of likely viola-
tions. We implemented MLFM based on OpenStack/Tacker, and our experimental re-
sults showed significant performance improvements over baseline approaches.

Limitations and Future Work. First, we have limited our scope to NFV in this work,
and a future direction is to apply MLFM to other large-scale virtual infrastructures
(e.g., clouds and SDNs). Second, while MLFM only focuses on security verification, a
natural next step is integrating MLFM with security enforcement mechanisms to turn
faster violation identification into more responsive attack prevention. Third, MLFM
is static in the sense that its verification is on-demand based on data snapshots, and
one future direction is to support continuous security verification (monitoring) based
on data streams. Finally, we will also investigate other ML-specific issues such as the
possibility of using deep learning for offline pre-training (due to its complexity), and
defence against potential adversarial attacks on the training process of MLFM.

Acknowledgements We thank the anonymous reviewers for their valuable comments.
This work was supported by the Natural Sciences and Engineering Research Council of
Canada and Ericsson Canada under the Industrial Research Chair in SDN/NFV Security
and the Canada Foundation for Innovation under JELF Project 38599.

16

References

1. Cloud Security Alliance, https://cloudsecurityalliance.org/research/ccm/. Last accessed 11
September 2021

2. ETSI: Network Functions Virtualisation Architectural Framework, https://www.etsi.org/.
Last accessed 11 September 2021

3. Network Functions Virtualisation (NFV); NFV Security; Problem Statement
https://www.etsi.org/. Last accessed 11 September 2021

4. Open Baton, https://openbaton.github.io/. Last accessed 11 September 2021
5. Open Platform for NFV, https://www.opnfv.org/. Last accessed 11 September 2021
6. Open Source MANO, https://osm.etsi.org/. Last accessed 11 September 2021
7. OpenStack, https://www.openstack.org/. Last accessed September 11, 2021
8. OpenStack Tacker, https://releases.openstack.org/teams/tacker.html. Last accessed Septem-

ber 11, 2021
9. Sugar: a SAT-based Constraint Solver, https://cspsat.gitlab.io/sugar/. Last accessed 8

November 2021
10. Verizon launches industry-leading large OpenStack NFV deployment,

https://www.openstack.org/news/. Last accessed 11 September 2021
11. Barakabitze, A.A., Ahmad, A., Mijumbi, R., Hines, A.: 5G network slicing using SDN and

NFV: A survey of taxonomy, architectures and future challenges. Computer Networks 167,
106984 (2020)

12. Ben-Ari, M.: Mathematical logic for computer science. Springer Science & Business Media
(2012)

13. Bursell, M., Dutta, A., Lu, H., Odini, M., Roemer, K., Sood, K., Wong, M., Wörndle, P.:
Network Functions Virtualisation (NFV), NFV security, security and trust guidance, v. 1.1. 1.
In: Technical Report, GS NFV-SEC 003. European Telecommunications Standards Institute
(2014)

14. Buss, S., Nordström, J.: Proof complexity and sat solving. Handbook of Satisfiability 336,
233–350 (2021)

15. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining. pp.
785–794 (2016)

16. Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., Peng, J.: XGBoost classifier for DDoS attack
detection and analysis in SDN-based cloud. In: IEEE international conference on big data
and smart computing (BigComp). pp. 251–256 (2018)

17. Danka, T., Horvath, P.: modAL: A modular active learning framework for Python. arXiv
preprint arXiv:1805.00979 (2018)

18. Eén, N., Sörensson, N.: An extensible sat-solver. In: International conference on theory and
applications of satisfiability testing. pp. 502–518. Springer (2003)

19. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ice learning for syn-
thesizing invariants and contracts. In: Proceedings of the ACM on Programming Languages
2(OOPSLA), 1–25 (2018)

20. Fayazbakhsh, S.K., Reiter, M.K., Sekar, V.: Verifiable network function outsourcing: require-
ments, challenges, and roadmap. In: Proceedings of the 2013 workshop on Hot topics in
middleboxes and network function virtualization. pp. 25–30 (2013)

21. Flittner, M., Scheuermann, J.M., Bauer, R.: Chainguard: Controller-independent verification
of service function chaining in cloud computing. In: IEEE Conference on Network Function
Virtualization and Software Defined Networks. pp. 1–7 (2017)

22. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Ice: A robust framework for learning in-
variants. In: International Conference on Computer Aided Verification. pp. 69–87. Springer
(2014)

17

23. Gong, W., Zhou, X.: A survey of sat solver. In: Proceedings of AIP Conference. vol. 1836,
p. 020059. AIP Publishing LLC (2017)

24. IEC ISO Std: ISO 27017. Information technology-Security techniques (DRAFT) (2012)
25. IETF, SFC: Internet Engineering Task, SFC Active WG Working Group Documents (2020),

https://www.redhat.com/en/blog/2018-year-open-source-networking-csps
26. Jayaraman, K., Bjørner, N., Outhred, G., Kaufman, C.: Automated analysis and debugging

of network connectivity policies. Microsoft Research pp. 1–11 (2014)
27. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real time net-

work policy checking using header space analysis. In: 10th {USENIX} Symposium on Net-
worked Systems Design and Implementation (NSDI’13). pp. 99–111 (2013)

28. Kotulski, Z., Nowak, T.W., Sepczuk, M., Tunia, M., Artych, R., Bocianiak, K., Osko, T.,
Wary, J.P.: Towards constructive approach to end-to-end slice isolation in 5G networks.
EURASIP Journal on Information Security 2018(1), 1–23 (2018)

29. Kramer, O.: Scikit-learn. In: Machine learning for evolution strategies, pp. 45–53. Springer
(2016)

30. Lakshmanan Thirunavukkarasu, S., Zhang, M., Oqaily, A., Singh Chawla, G., Wang, L.,
Pourzandi, M., Debbabi, M.: Modeling NFV deployment to identify the cross-level incon-
sistency vulnerabilities. IEEE CloudCom (2019)

31. Lopes, N.P., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking beliefs in
dynamic networks. In: 12th {USENIX} Symposium on Networked Systems Design and Im-
plementation (NSDI’15). pp. 499–512 (2015)

32. Madi, T., Jarraya, Y., Alimohammadifar, A., Majumdar, S., Wang, Y., Pourzandi, M., Wang,
L., Debbabi, M.: ISOTOP: auditing virtual networks isolation across cloud layers in Open-
Stack. ACM Transactions on Privacy and Security (TOPS) 22(1), 1–35 (2018)

33. Madi, T., Majumdar, S., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L.: Auditing security
compliance of the virtualized infrastructure in the cloud: Application to OpenStack. In: Pro-
ceedings of the Sixth ACM Conference on Data and Application Security and Privacy. pp.
195–206 (2016)

34. Maji, P., Mullins, R.: On the reduction of computational complexity of deep convolutional
neural networks. Entropy 20(4), 305 (2018)

35. Majumdar, S., Jarraya, Y., Madi, T., Alimohammadifar, A., Pourzandi, M., Wang, L., Deb-
babi, M.: Proactive verification of security compliance for clouds through pre-computation:
Application to OpenStack. In: European Symposium on Research in Computer Security. pp.
47–66. Springer (2016)

36. Majumdar, S., Jarraya, Y., Oqaily, M., Alimohammadifar, A., Pourzandi, M., Wang, L., Deb-
babi, M.: LeaPS: Learning-based proactive security auditing for clouds. In: European Sym-
posium on Research in Computer Security. pp. 265–285. Springer (2017)

37. Majumdar, S., Madi, T., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L., Debbabi, M.: Se-
curity compliance auditing of identity and access management in the cloud: Application to
OpenStack. In: IEEE 7th International Conference on Cloud Computing Technology and
Science. pp. 58–65 (2015)

38. Majumdar, S., Madi, T., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L., Debbabi, M.: User-
level runtime security auditing for the cloud. IEEE Transactions on Information Forensics
and Security 13(5), 1185–1199 (2017)

39. Marchetto, G., Sisto, R., Yusupov, J., Ksentini, A.: Virtual network embedding with formal
reachability assurance. In: 14th International Conference on Network and Service Manage-
ment. pp. 368–372 (2018)

40. Mohamed, A.E.: Comparative study of four supervised machine learning techniques for clas-
sification. Information Journal of applied science and technology 7(2) (2017)

41. Monard, M.C., Batista, G.E.: Learmng with skewed class distrihutions. Advances in Logic,
Artificial Intelligence, and Robotics: LAPTEC 85(2002), 173 (2002)

18

42. Neutatz, F., Mahdavi, M., Abedjan, Z.: Ed2: A case for active learning in error detection.
In: Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. pp. 2249–2252 (2019)

43. OpenStack Training Labs: OpenStack Training Labs, available at:
https://wiki.openstack.org/wiki/Documentation/training-labs

44. Oqaily, A., Sudershan, L., Jarraya, Y., Majumdar, S., Zhang, M., Pourzandi, M., Wang, L.,
Debbabi, M.: NFVGuard: Verifying the Security of Multilevel Network Functions Virtualiza-
tion (NFV) Stack. In: 2020 IEEE International Conference on Cloud Computing Technology
and Science. pp. 33–40. IEEE (2020)

45. Quinn, P., Nadeau, T.: Rfc 7948, problem statement for service function chaining. Internet
Engineering Task Force (IETF), ed (2015)

46. Ren, S., Zhang, X.: Synthesizing conjunctive and disjunctive linear invariants by K-means++
and SVM. Int. Arab J. Inf. Technol. 17(6), 847–856 (2020)

47. Sani, H.M., Lei, C., Neagu, D.: Computational complexity analysis of decision tree algo-
rithms. In: International Conference on Innovative Techniques and Applications of Artificial
Intelligence. pp. 191–197. Springer (2018)

48. Sassi, I., Anter, S., Bekkhoucha, A.: A graph-based big data optimization approach using
hidden markov model and constraint satisfaction problem. Journal of Big Data 8(1), 1–29
(2021)

49. Schear, N., Cable II, P.T., Moyer, T.M., Richard, B., Rudd, R.: Bootstrapping and Main-
taining Trust in the Cloud. In: Proceedings of the 32Nd Annual Conference on Computer
Security Applications. pp. 65–77 (2016)

50. Settles, B.: Active learning literature survey (2009)
51. Shin, M.K., Choi, Y., Kwak, H.H., Pack, S., Kang, M., Choi, J.Y.: Verification for NFV-

enabled network services. In: ICTC (2015)
52. Souri, A., Navimipour, N.J., Rahmani, A.M.: Formal verification approaches and standards

in the cloud computing: a comprehensive and systematic review. Computer Standards &
Interfaces 58, 1–22 (2018)

53. SP, NIST: 800-53. Recommended security controls for federal information systems pp. 800–
53 (2003)

54. Spinoso, S., Virgilio, M., John, W., Manzalini, A., Marchetto, G., Sisto, R.: Formal verifica-
tion of virtual network function graphs in an sp-devops context. In: European Conference on
Service-Oriented and Cloud Computing. pp. 253–262. Springer (2015)

55. Tamura, N., Banbara, M.: Sugar: A CSP to SAT translator based on order encoding. Pro-
ceedings of the Second International CSP Solver Competition (2008)

56. Tschaen, B., Zhang, Y., Benson, T., Banerjee, S., Lee, J., Kang, J.M.: Sfc-checker: Check-
ing the correct forwarding behavior of service function chaining. In: IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN). pp. 134–140
(2016)

57. Vizel, Y., Gurfinkel, A., Shoham, S., Malik, S.: IC3-flipping the E in ICE. In: Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation. pp. 521–
538. Springer (2017)

58. Wang, Y., Li, Z., Xie, G., Salamatian, K.: Enabling automatic composition and verification of
service function chain. In: IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS). pp. 1–5 (2017)

59. Wang, Y., Madi, T., Majumdar, S., Jarraya, Y., Alimohammadifar, A., Pourzandi, M., Wang,
L., Debbabi, M.: TenantGuard: Scalable runtime verification of cloud-wide VM-level net-
work isolation. In: The Network and Distributed System Security Symposium (2017)

60. Zhang, X., Li, Q., Wu, J., Yang, J.: Generic and agile service function chain verification on
cloud. In: IEEE/ACM 25th International Symposium on Quality of Service. pp. 1–10 (2017)

19

61. Zhang, Y., Wu, W., Banerjee, S., Kang, J.M., Sanchez, M.A.: Sla-verifier: Stateful and quan-
titative verification for service chaining. In: IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. pp. 1–9 (2017)

Appendix

Table 1: Examples of NFV security properties [44]
Security Properties Sub-Properties Description Standards

Physical resource
isolation [32]

No VNFs co-residence
VNFs of a tenant should not be placed on the same server as
VNFs of a non-trusted tenant

ISO [24], NIST800 [53],
CCM [1], ETSI [13]

Virtual resource
isolation [32]

No common ownership
Tenant-specific resources should belong to a unique tenant, unless
permitted by a user-defined policy

CCM [1], ETSI [13],
IETF-RFC7665, RFC-
7498 [25]

Mapping unicity
VLANs-VXLANs

VLANs and VXLANs should be mapped one-to-one on a given server

ISO [24],
NIST800 [53],
CCM [1],
ETSI [13],
IETF-RFC7665,
RFC-7498 [25]

Correct association
Ports-Virtual Networks

VNFs should be attached to the virtual networks they are connected
to through the right ports

Topology
isolation

[32]
Overlay tunnels isolation

In each VTEP end, VNFs are associated with their physical location
(at L2) and to the VXLAN assigned to the networks they are attac-
hed to at L1

Mappings unicity Virtual
Networks Segments

Virtual networks and segments should be mapped one-to-one

Mappings unicity
Ports-VLANs

Ports should be mapped to unique VLANs

Mappings unicity
Ports-Segments

vPorts should be mapped to unique segments

Policy and state
correctness [51]

-
A policy can be dynamically changing. The changed policy should be
reconfigured in VNF node as soon as possible

ETSI [13, 3], IETF-R
FC7665, RFC8459[25]

Functionality of VNF
and VNFFGs [20, 60]

-
Check if VNFs and the composition (i.e., service chaining) of these
functions work as intended

ETSI [3], IETF-RFC-
7665, RFC8459 [25]

SFC ordering and
sequencing as defined
by the specification [21]

-
SFCs should maintain the order of VNFs with the correct traffic forw-
arding behavior as defined by the specifications

ETSI [13, 3], IETF-
RFC7665, RFC8459 [25]

Topology
consistency

[32]

VNFFG configuration
consistency between
L1/L2

Consistency between the size of VNFFGs, the sequences of VNFs
and the classifiers at L1 and their parallel implementation at L2

ISO [24],
NIST800 [53],
CCM [1],
IETF-RFC-8459 [25],
ETSI [13, 3]

Virtual links consistency
VNFs should be connected to the VLANs and VXLANs in L2 that
corresponds to the virtual networks they are connected to in L1

VNF location consistency Consistency between VNFs locations at L2 and L1

CPs-Ports consistency
Consistency between CPs defined at L1 and their created counterpa-
rts; Ports in (L2)

2) Compliance Verifier
and

Reporter

Audit
Report

Security Properties
and Parameters

ML Training

ML Deployment

5) ML Model Learner

Uncertainty Random

4) Sampler

QBC …

1) Data Collection
and

Processing

6) Formal Verifier

MLFM
MLFM User

NFV Environment

Audit Data

3) MLFM Manager

Data and Audit Repository

NOD [31]
….

Sugar CSP
Solver [55]

Fig. 11: The MLFM system architecture

20

