
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

VMGuard: State-based Proactive Verification of
Virtual Network Isolation with Application to NFV

Gagandeep Singh Chawla, Mengyuan Zhang, Suryadipta Majumdar,
Yosr Jarraya, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi

Abstract—Network Functions Virtualization (NFV) leverages from clouds to simplify and automate the creation and deployment of
network services on the fly in a multi-tenant environment. However, clouds may also bring issues leading to tenants’ concerns over
possible breaches violating the isolation of their deployments. Verifying such network isolation breaches in cloud-enabled NFV
environments faces unique challenges. The fine-grained and distributed network access control (e.g., per-function security group
rules), which is typical to virtual cloud infrastructures, requires examining not only the events but also the states of all virtual resources
using a state-based verification approach. However, verifying the state of a virtual infrastructure may become highly complex and
non-scalable due to its sheer size paired with the self-serviced dynamic nature of clouds. In this paper, we propose VMGuard, a
state-based proactive approach for efficiently verifying large-scale virtual infrastructures in cloud and NFV against network isolation
policies. Informally, our key idea is to proactively trigger the verification based on predicted events and their simulated impact upon the
current state, such that we can have the best of both worlds, i.e., the efficiency of a proactive approach and the effectiveness of
state-based verification. We implement and evaluate VMGuard based on OpenStack, and our experiments with both real and synthetic
data demonstrate the performance and efficiency, e.g., less than five milliseconds to perform incremental verification on a dataset with
more than 25,000 VMs and less than two milliseconds with the proactive module enabled.

Index Terms—Security Compliance, Verification, Cloud Security, Security Auditing, Network Isolation

F

1 INTRODUCTION

Security and privacy issues, such as lack of transparency,
accountability and verifiability, remain the main concerns
for individuals and companies when it comes to adopting
clouds [1], [2], [3], [4] and its related technologies, partic-
ularly network functions virtualization (NFV) [5], which is
an emerging cloud-enabled application that allows the vir-
tualization of network functions and the delivery of network
services using cloud networks. While NFV benefits from the
promising features of the cloud service delivery model such
as cost optimization, fast deployment and scalability, it in-
herits several challenges such as the lack of visibility into the
underlying infrastructure, which hinders its auditability [4],
[6].

In particular, the multi-tenancy nature of public clouds
means cloud tenants would likely keep worrying about
the lack of sufficient network isolation around their virtual
resources. Recent studies show that almost 70% of cloud
users consider security as a major issue in clouds, of which
80% agree that network isolation is the biggest obstacle
to adopting clouds [7], [8]. Cloud providers often have an
obligation to provide clear evidences for sufficient network
isolation [9], either as part of the service-level agreements,
or to demonstrate compliance with security standards (e.g.,

• G. S. Chawla, S. Majumdar, L. Wang and M. Debbabi are with The
Concordia Institute for Information Systems Engineering, Concordia
University, Montreal, Canada. E-mail: g chawla, majumdar, wang and
debbabi@encs.concordia.ca

• M. Zhang, Y. Jarraya and M. Pourzandi are with The Ericsson Se-
curity Research, Ericsson Canada, Montreal, QC, Canada. E-mail:
mengyuan.zhang, yosr.jarraya and makan.pourzandi@ericsson.com

ISO 27002/27017 [10], [11] and CCM 3.0.1 [12]). Moreover,
cloud providers may gain a competitive edge in today’s
market by providing the capability of verifying network
isolation as a security service to their tenants.

However, in contrast to traditional network environ-
ments, the virtual infrastructures hosted in clouds pose
unique challenges to network isolation verification. The
sheer size of such virtual infrastructures paired with their
self-serviced and highly dynamic nature means most verifi-
cation techniques designed for traditional networks would
cause so much delays that their results may become obsolete
before they are ready (a more detailed review of related
work is provided in Section 7). To that end, two promising
cloud-specific approaches are: state-based verification and
proactive verification. The state-based verification approach
verifies the entire virtual network states (e.g., reachabil-
ity information inside a virtual infrastructure), and hence,
achieves a high accuracy rate. However, due to the sheer
size of a cloud, the existing works (e.g., [13], [14]) may
cause significant delay. On the other hand, the proactive
verification approach (e.g., [15], [16]) responds very quickly,
as it adopts an event-based approach and initiates the verifi-
cation before an event actually occurs. However, examining
only the events and overlooking the entire state of a network
could affect its accuracy; this will be further explained in
Section 2 to demonstrate the strengths and weaknesses of
those solutions and motivate towards our work.

Considering the above-mentioned advantages and
drawbacks of the state-based approach and the proactive
approach, a natural question is: Can we design a state-based,
and proactive approach, such that we can have the best of both
worlds? In this paper, we propose VMGuard as an answer.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

We tackle several unique challenges in designing VMGuard.
Specifically, the state-based verification only works after an
event has actually occurred (with its effect on the state
materialized). However, since each event can lead to mul-
tiple predicted next events with different effects on the
current state, how to verify those predicted events without
adversely affecting the true state of the virtual infrastructure
(since predicted events may never happen) becomes a major
challenge. We will tackle this and other challenges in the re-
mainder of this paper. In summary, our main contributions
are as follows.
• To the best of our knowledge, VMGuard is the first state-

based proactive approach to network isolation verifica-
tion. Its novel approach first proactively performs veri-
fication on the predicted next events with all potential
parameters, then incrementally updates the verification
results with the evolution of the virtual infrastructure,
and finally enforces its verification result on the infras-
tructure as soon as an actual event occurs.

• Our experiments with both real and synthetic data
demonstrate both effectiveness and efficiency of VM-
Guard in comparison to existing methods as demon-
strated through experiments with both real and synthetic
data. As VMGuard is proactive, it takes less than two
milliseconds for a dataset with more than 25,000 VMs for
any intercepted event. In contrast, TenantGuard verifies
all pairs reachability and takes 108 seconds for the same
dataset.

• We implement VMGuard based on OpenStack [17], a
major cloud management platform. Additionally, we
provide thorough discussion on how to port VMGuard
to the NFV environments.
The remainder of the paper is organized as follows.

Section 2 briefly describes the preliminaries of this work.
Section 3 details the methodology. Section 4 presents the
implementation and Section 5 shows the experimental re-
sults. Section 6 provides more discussions. Section 7 reviews
related work and Section 8 concludes the paper.

2 PRELIMINARIES

This section first provides necessary background on two
state-of-the-art verification approaches to facilitate more dis-
cussions, then further motivates towards our solution using
an example, and state our threat model. Finally, we brief
over the NFV reference architecture and network service
deployment.

2.1 State-Based Verification

As an example of state-based (the state here refers to the
collection of all reachability information inside the virtual
infrastructure) verification tools, TenantGuard [14] can effi-
ciently verify all-pair VM-level reachability for large clouds
(e.g., 13 seconds for 168 millions of VM pairs) with its
hierarchical approach, as demonstrated in Figure 1 and
detailed below.

• In [Step 1], TenantGuard checks the subnet-to-
subnet reachability within the same network (using the
private IPs), e.g., between SNA1 and SNA2.

External

Network

SNA1 SNA2 SNA3

Step 2: Public IP Prefix Reachability

Step 1:

Private IP Prefix

Reachability

Step 3: VM-to-VM Reachability

Security
 Groups

RA1 RA2 RA3

Fig. 1: Examples of the state-based verification by Tenant-
Guard [14]

• In [Step 2], TenantGuard verifies the subnet-to-
subnet reachability involving external networks (using
the public IPs), e.g., between SNA1 and SNA3.

• In [Step 3], TenantGuard only needs to check VM-
level reachability (mainly based on security group rules
of VMs) for the reachable subnets obtained from the
first two steps, leading to significant cost savings.

2.2 Proactive Verification

As an example of proactive verification tools, LeaPS [16]
initiates the verification before an event actually arrives,
leading to millisecond-level response time. This is possible
due to the so-called dependency model, which captures the
likelihood of next events (either by design, or extracted as
frequent patterns from historical events), as demonstrated
in Figure 2 and detailed below.

Fig. 2: Examples of the proactive verification by LeaPS [16]

• When a create VM event occurs, LeaPS identifies a
highly probable next event, attach port, from the depen-
dency model.

• LeaPS verifies this predicted event (attach port) based
on a pre-defined signature of critical events (i.e., events
causing an isolation breach between different cloud
users/tenants, e.g., plugging a port on another tenant’s
VM under vulnerability OSSA 2014-008 [18]), and if this
event causes no isolation breach then its parameters
(e.g., VM ID: 2134) will be added to the watchlist (which
is essentially a tenant-specific white list).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

• Later, when an attach port event actually occurs, all
LeaPS needs to do is to search for its parameter (e.g.,
VM ID) in the watchlist (a match means the event will
be allowed), resulting in a negligible delay.

Using the following example, we demonstrate the draw-
backs and strengths of those exisitng approaches, and posi-
tion our solution, VMGuard.

2.3 Motivating Example
Figure 3 employs a sequence of administrative events
(upper-left) inside a simplified virtual infrastructure (upper-
right) to demonstrate the limitations of existing approaches
and our key ideas (lower). Suppose a user Bob wants to
forbid all the ingress traffic from subnet SNA1 to his billing
server (IP: 10.1.1.7) by deleting its security group rule [17].
However, he is not aware of an OpenStack vulnerability
OSSA-2015-021 [19], which causes the change of security
group to fail silently on already running VMs. At a later
time, another user Alice creates her own VM (10.1.5.9) and
connects it to subnet SNA1. At this time, the network isola-
tion has been compromised since Alice can now access Bob’s
billing server via subnet SNA1.
• In such a case, the state-based verification approach

could generate all-pair reachability results within sec-
onds by examining the state of the virtual infrastruc-
ture. However, the current solutions (e.g., [13], [14]) by
themselves do not support verification against isolation
policies (e.g., no ingress traffic from subnet SNA1 to Bob’s
billing server), and applying an additional verification
tool (e.g., [20]) on top of the all-pair reachability results
may again introduce a significant delay (ranging from
minutes to hours for verifying large clouds based on our
evaluation).

• As a promising solution, proactive verification (e.g., [15],
[16]) would predict event EK as soon as it sees EK−1

since the next operation after creating a VM is typically
attaching it to a subnet), and consequently start the
verification for EK long before it actually arrives. How-
ever, since we assume the vulnerability is not known,
the first half of this undesired reachability (from Bob’s
billing server to SNA1) can only be detected by exam-
ining the state of the virtual infrastructure. Therefore,
without looking at the state, the event-based proactive
verification will consider EK as normal and miss the
isolation breach of Bob’s VM (i.e., Alice VM can still reach
to Bob’s.

In this paper, we propose VMGuard as an answer, as de-
picted in the bottom of Figure 3. We elaborate on our
methodology in Section 3.

2.4 Threat Model
The in-scope threats include any implementation flaws,
misconfigurations, and certain vulnerabilities in the cloud
platform that may be exploited by malicious cloud users
that lead to a change of the system state. If the change could
potentially violate the network isolation policies specified
by cloud tenants or the provider, VMGuard would be able
to block the event. Since our solution is based on the system
state instead of signature, such threats are in the scope
even if they are previously unknown, as long as their effect

on network isolation is visible in the state of the virtual
infrastructure. On the other hand, we focus on the virtual
network management layer in the cloud and only consider
network isolation-related security policies. We also assume
the cloud platform may be trusted for the correctness of the
inputs (e.g., logs and configuration database). Any security
breach that is not reflected in those inputs (either due to
the nature of such breaches, such as side-channel attacks, or
due to inputs tempered by attackers) is out of the scope.
Also, any potential privacy leakage from the verification
results is beyond the scope of this work. The pruning step
in VMGuard design is optional and should be applied by
a user if s/he is only concerned by the vulnerabilities that
affect a specific part of the cloud.
In-Scope Misconfigurations and Vulnerabilities. The pos-
sible misconfigurations include the reachability created by
admins accidentally. For example, an admin may add a
VM from one tenant to another or delete an important VM
from one tenant mistakenly. These behaviors may not be
malicious by nature and hence, an intrusion detection solu-
tion may not raise any alarm. VMGuard could block those
potential misconfigurations by verifying against tenant-
defined policies. The unknown vulnerabilities that might
breach network isolation between tenants could be moni-
tored by VMGuard against the policies. For example, if an
unknown vulnerability allows one tenant to stealthily add
his/her VM under another tenant’s subnet, signature-based
security solutions may fail to capture this as the signature
remains unknown while VMGuard can still protects the
system against such unwanted information leakage based
on tenant-defined policies. Generally, even the attack steps
are unknown or can be improvised in many ways by an
attacker, VMGuard can still detect those attacks as long
as they breach a given security policy related to network
isolation.

2.5 NFV over Clouds
To enable the deployment of NFV network services, ETSI [5]
standardizes the high-level NFV reference architecture. NFV
resides as a logical layer over clouds to automate, orches-
trate and manage network services.
NFV Reference Architecture. Figure 4 illustrates the ETSI
NFV reference architecture consisting of the Management
and Orchestration (MANO) with its three major compo-
nents as the driving unit for NFV. The Virtual Infrastruc-
ture Manager (VIM), manages and controls Network Func-
tion Virtualization Infrastructure (NFVI) i.e., the pool of
virtualized compute, storage and network resources. The
Commercial Off-The-Shelf (COTS) servers are combined
to act as a common pool of resources, which are then
logically redistributed either in presence of a hypervisor,
i.e., Virtualization, or in absence of it, i.e., Containerization.
Note that, VMGuard is designed to work with the clouds,
therefore, in our use-case, we only cover virtualization-
based VIM i.e., OpenStack. Over NFVI resides the Virtual
Network Functions (VNFs) that undergo common health
operations such as scale, heal, terminate, etc. as a part of
their life-cycle [21]. A Virtual Network Function Manager
(VNFM) manages the life-cycle of VNFs. Some VNFs ex-
hibit specific health-checks and mission-critical operations.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Fig. 3: The motivating example

Therefore, they receive a dedicated life-cycle manager i.e.,
Element Management Systems (EMS), facilitated by their
vendors. VNFM also coordinates with the EMS. The VNFs
are launched as a part of network services by the Network
Function Virtualization Orchestrator (NFVO). The latter
acts as a management interface, where the client speci-
fies their network service requirements. Finally, the Busi-
ness/Operations Support System (OSS/BSS) supports end-
to-end telecommunication services requirement gathering,
which is encoded as the descriptors [22].

��������

	
�����������

��
�������

�������������
������

�������
�

��������

�������

��������

�������

��������

�����������������

����������������

����

 ��!"��

���

����

�#����
�����
���
��

�������� �$��������

��#

��
�������

 �$��������

�#��	
������������

���%��&���#��
��	
������������

'��������

()�����
�������
�����
�� �$���������
�����
�� ���
��#��������
�����
��

����

������#������

��#�*��#�+ ��#�,

(���*(���+ (���,

��������

�������
�

��������

�������

��������

�������

Fig. 4: ETSI NFV architecture [5]

Deploying a Network Service. The OASIS1 standardizes
descriptors as the means to encode interoperable services
and application workloads hosted on the clouds [23]. The
TOSCA [24] descriptors enable interoperability and porta-
bility with automated management across the cloud plat-
forms [22]. Three types of descriptors are used during a
network service deployment process. A VNF Descriptor
(VNFD) describes the specification of a VNF. Several VNFs

1. Organization for the Advancement of Structured Information

can be connected with the forwarding paths (i.e., SDN-
based), described as a VNF Forwarding Graph Descriptor
(VNFFGD). The forwarding graphs require Neutron-SFC
(Service Function Chaining) [22], which we do not support
currently with VMGuard. A Network Service Descriptor
(NSD) describes the complete end-to-end network service,
composed by connecting VNFs and the forwarding graphs.

Assuming Bob in the motivating example as a NFV
tenants (an NFV tenant is not necessarily a cloud tenant,
as elaborated in Section 6). Bob interacts with the OSS/BSS
demonstrating his requirements and generates a TOSCA for
his/her network service. TOSCA is provided to the NFVO,
which uses a TOSCA-Parser [22] to produce a Heat tem-
plate. Heat [22] is an OpenStack [17] orchestration engine
that enables the cloud tenants to automate the creation and
deployment of the virtual resources as workloads written as
Heat Orchestration Template (HOT) [25]. The templates are
human and machine readable codes written in YAML which
manages cloud resources. The heat template generated from
TOSCA defines all the virtual resources such as VMs, ports,
routers, required for Bob’s network service. The heat tem-
plate is received by OpenStack (VIM) to orchestrate the
network service in the cloud. NFVO co-ordinations the de-
ployment of virtual resources and acknowledges Bob with
the deployment status. VMGuard resides at VIM, where
it analyzes heat templates to first propose policies for the
tenants and then to enforce the applied ones, as elaborated
later in Section 3.6.

3 VMGUARD METHODOLOGY

We first show the main challenges and provide an overview
before delving into the details of our methodology.

3.1 Challenges

While previously discussed state-based verification (e.g.,
TenantGuard [14] in Section 2.1) and proactive verification
(e.g., LeaPS [16] in Section 2.2) can each work efficiently
on the aspects it was designed for, they cannot simply

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Fig. 5: Challenges in designing a state-based proactive verification approach

be orchestrated to enable scalable and efficient state-based
proactive verification, without fundamental modifications
to their inner working. In this section, we discuss the main
challenges encountered in this respect based on the integra-
tion scenario as illustrated in Figure 5. Then, we show how
we address them in our solution.

In Figure 5, in [Phase 1], upon the occurrence of
event Ek−1 (create VM), LeaPS is used to predict the next
event to be attach port based on the dependency model.
In [Phase 2], we need to obtain an updated state of the
virtual infrastructure resulting from applying the effect of
this predicted event on the system. Having the states of the
system (i.e., the collection of all the reachability information
with the effect of that event taken into consideration) is
essential to applying any state-based verification such as
TenantGuard. In [Phase 3], TenantGuard is applied to the
updated state to obtain the reachability result. In this case,
TenantGuard identifies a breach of isolation between Alice
and Bob networks, the watchlist (white list) is not updated,
and when the actual event Ek (attach port) arrives, it will be
denied. However, this description has omitted some major
challenges related to obtaining such a state for an event that
is only predicted, as follows:

• (C1) Lack of mechanism to predict events’ parameters:
The dependency model can only predict the type of
events (e.g., attach port) but not their detailed param-
eters (e.g., to which subnet) [16]. However, without the
right parameters, we cannot obtain the state resulting
from the effect of a given event. To solve this issue, we
propose a pre-computation approach for these parame-
ters (see Section 3.3 for more details).

• (C2) Complexity of obtaining the actual resulting
state: even if we could predict the event parameters
(e.g., attach port to either subnet SNA1, SNA2, or SNA3),
obtaining the resultant state for those events would still
be a challenge. We cannot directly apply such events
to the virtual infrastructure, since the predicted events

may never occur, while their effects may be irrevocable
(e.g., information leakage or denial of service as the
result of an isolation breach). We address this challenge
by evaluating the possible states using incremental
verification (see Section 3.4 for more details).

• (C3) Prohibitive Computational and Storage Over-
head: While a viable solution is to emulate the effect
of predicted events on a new copy of the current state,
however, creating such a copy may lead to prohibitive
computational and storage overhead in clouds. To make
things worse, an event may lead to multiple predicted
parameters with different and incompatible effects on
the state (e.g., P1 and P3 lead to breaches but P2

does not), which requires creating multiple indepen-
dent copies of the state. We use a pruning technique
to tackle this issue (see Section 3.5 for more details).

3.2 Overview

To address the aforementioned challenges, we design our
state-based proactive approach, namely, VMGuard. Figure 6
shows an overview of VMGuard with three main modules,
proactive verification, incremental verification, and pruning.

• First, the proactive verification module performs pre-
computation and proactive verification. In the pre-
computation phase, all the predicted next events will
be instantiated with potential parameters based on the
current state of the virtual infrastructure.

• Second, the incremental verification module forks mul-
tiple copies of the state each of which is used to evaluate
the impact of one instantiated event. Each copy of
the state is flushed immediately once the verification
is done; only the compliant results are stored in a
watchlist. In this context, compliant means the actual
implementation meets the user’s specifications (e.g.,
security policies), while non-compliant means the im-
plementation violates the specifications.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 6: An overview of VMGuard

• Third, to minimize the overhead of incremental verifi-
cation, the pruning module further limits the scope of
the verification to the intersection between the set of
VMs involved in the policies and the set of VMs that
may be impacted by the instantiated event.

• Finally, when the actual event arrives, the proactive
verification module matches it against the watchlist and
the incremental verification module merges its effect to
the actual state of the virtual infrastructure.

3.3 Proactive Verification

In this section, we present the details of the proactive verifi-
cation module with the corresponding running examples.

Prediction. Our prediction algorithm/method works in two
major steps: building dependency model and predicting
future events.

• To build a probabilistic dependency model, we first
collect historical data (e.g., event logs) from the cloud
platforms, and then process those logs to identify
corresponding events; finally, we calculate conditional
probabilities to construct the dependency model using
a Bayesian network.

• To predict future events, we leverage the already built
dependency model, which captures each event transi-
tion and its corresponding probabilities. To that end,
we intercept each run-time event from the cloud man-
agement platform, then measure the conditional prob-
ability of each possible future transition from the the

current event, and finally, identify the most probable
future event(s) for our proactive verification.

Pre-computation. Once our prediction step is completed,
we assume those predicted events as the candidates for
our pre-computation step. Any event exceeding the pre-
defined threshold becomes a candidate for pre-computation.
A candidate event gets instantiated based on all possible
parameters, as demonstrated through an example based on
OpenStack [17] in Table 1. To illustrate this, Figure 7 shows
how VMGuard works on our running example; the upper
part of the figure is the timeline for incoming events and
the actions taken by VMGuard, and the lower part of the
figure shows the dependency model (left), the network state
(center), and the watchlist for the event EN (right).

Example 1. From the sequence of events in Figure 7, event
EK−1 creates a VM (ID: 2134). According to the depen-
dency model, the next event could be delete VM or attach
port. Assume the threshold is 0.5 in all our examples. The
pre-computation module selects attach port as the next
event to be evaluated in advance. As shown in Table 1,
to instantiate this event, both VM ID and subnet ID are
the required parameters. The event generator generates
three possible events based on the current network state:
“Post create 2134, SNA1”, “Post create 2134, SNA2”, and
“Post create 2134, SNA3”.

Proactive Verification. Two possible scenarios may happen
for proactive verification, i.e., the actual event may either
occur before, or after the pre-computation process finishes.

TABLE 1: Examples of reachability-related events, their parameters to be instantiated, and the number of possible
instantiations

Event Parameters # of Predicted Parameters
Attach Interface Router ID and subnet ID* #Routers × #Subnets
Attach Port VM ID and subnet ID #Subnets
Attach Public IP VM ID and unallocated public IP #VMs × #unallocated public IP
Delete Router Router ID #Routers
Detach Interface Router interfaces ID #Router interfaces
Detach Port VM port ID #Port
Detach Public IP Allocated public IP #Allocated public IPs
Detach Security Group Rule Security group ID #Security group rules
* Exception: A router should not have any overlapping subnets

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

Fig. 7: Applying VMGuard on the running example

In the first case, VMGuard will switch to the intercept-check
mode, which only verifies the intercepted event, e.g., attach
port verification in Figure 7 (some other situations, e.g., a
mistakenly predicted event, will also trigger the intercept-
check mode). In the second case, VMGuard will trigger
proactive verification, which searches for the event in the
watchlist, e.g., delete router verification. In either case, the
watchlist is flushed, as it is no longer valid with the state
of the cloud. The verification process will be detailed in
Section 3.4, and for now it can be regarded as a black-box.

Example 2. The next event for attach port is “EN : delete
router”. After instantiating the event with the three avail-
able routers, RA1, RA2, and RA3, VMGuard triggers the
incremental verification. The results of the verification
are added to a watchlist, shown in Figure 7 (lower right).
Assume the network isolation policy says “VME1 allows
all ingress traffic from the external network”, which means
Eve’s VM under RA2 must be reachable to the external
network. Then, “Delete router RA2” is a non-compliant
event and will be removed from the watchlist, whereas
“Delete router RA3” is compliant and will be kept in the
watchlist and allowed later when it occurs.

3.4 Incremental Verification

As we discussed in Section 3.1, emulating the effect of multi-
ple predicted events requires creating copies of the state of
the virtual infrastructure. For this purpose, we propose the
Fork and Merge procedures in the VMGuard incremental
verification module.

Fork. During the fork procedure, each instantiated event
will be associated with an independent copy of the current
state of the virtual infrastructure. To maintain the scalability
of this solution, we will leverage the pruning module (de-
tailed in Section 3.5) to limit the scope of verification and
we will further evaluate the overhead of the fork procedure
through experiments in Section 5. Once the instantiated
event is applied to a copy of the state and the pruning
module has been applied, we will employ the resultant
state to verify the reachability against the given isolation
policy, and then delete that copy of the state as soon as

the verification completes. In this way, we do not incur the
additional storage overhead for maintaining multiple copies
of the state, and only the compliant results will be stored
in the watchlist for proactive verification. The actual state
of the virtual infrastructure remains intact until the merge
procedure is triggered.
Merge. The merge procedure will be triggered when a com-
pliant event is actually received. It will update the actual
state of the virtual infrastructure based on the effect of this
event.

Algorithm 1: INCREMENTAL VERIFICATION

Input: Event, RadixTries, PrunedList,
ReachabilityRelatedEvents

Output: result∈{Compliant, Non-Compliant}
1 Copy RadixTries to RadixTriesFork
2 if event ∈ ReachabilityRelatedEvents then
3 Update RadixTriesFork with event
4 for VMdst ∈ PrunedList do
5 for VMsrc ∈ PrunedList do
6 Triepub←

getBTrie(VMdst.publicIP.CIDR,VMsrc.subnet id)
7 Triepriv← getBtrie(VMdst.private.CIDR, rounter id)
8 routable← Route-Lookup(Triepub,Triepriv)
9 if routable is true then

10 if VerifyPolicy(VMsrc,VMdst) is true then
11 result← Compliant
12 else
13 result← Non-Compliant
14 break
15 return result

Input: event response, Radixtries
16 if event response is success then
17 Update RadixTries with event

In Algorithm 1, Lines 10-15 present the fork procedure.
It takes an event, the current radix tries [26] (a data structure
that flattens IP address ranges and arranges them in a
manner to efficiently search routes), the prunedList (this
list will be generated in Algorithm 2 in Section 3.5) and
ReachabilityRelatedEvents (See Table 1 as an example). Lines
1-3 in the algorithm generate a copy of the state (RadixTries-
Fork) for a reachability event and apply the event to the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

state. Lines 4-5 take the pair of VMs from the prunedlist,
then Lines 6-8 evaluate the reachability between two VM
pairs. The function getBtrie reads radix Tries to collect both
(Triepub) public and (Triepriv private routes. The function
Route-Lookup finds routes based on binary tries. Function
VerifyPolicy checks whether the reachability between VMsrc

and VMdst is allowed. Then Lines 9-14 generate compliance
results by comparing the policy to the reachability results
of TenantGuard. If a non-compliant result is found, this
instantiated event is marked as non-compliant. Lines 16-17
show the merge procedure only update the state when the
event response is success.
Example 3. In Figure 7, EK−1 triggers proactive verification

for event EK . The fork procedure emulates the impacts
of three events on three independent copies of the state.
However, since the actual event “attach port SNA1” oc-
curs before the pre-computation phase completes, the
verification against other copies gets flushed immedi-
ately; the verification happens only on the copy of state
with the actual event. State-based verification tools, e.g.,
TenantGuard, will identify the new reachability in the
copied state between the newly created VM (ID: 2134)
and Bob’s VM. Assume the policy is “VMBob, *, Deny”
(i.e., denying all ingress traffic to this VM), which means
this actual event is non-compliant and therefore, will be
blocked by VMGuard.

3.5 Pruning

To improve the scalability of our incremental verification,
we present the pruning module in this section. The main
purpose of this module is to reduce the number of VMs for
incremental verification. Only the compliant results corre-
sponding to the pruned list of VMs are stored in a watchlist
to wait for the actual event. However, the pruning step is
optional and should be applied by a user if s/he is only
concerned with vulnerabilities that may cause changes only
in a specific part of the cloud.

In Algorithm 2 (pruning procedure), Lines 1-3 list the
VMs that have at least one policy associated with the input
event’s tenant ID. The list VMsUnderTenantPolicy consists of
the VMs covered by the policies specified by tenants and
the list VMsUnderEventScope are VMs which are affected by
the current event among those covered by the policies. If the
list is not empty, Lines 4-11 also list the VMs that might be
affected by the input event by comparing the attributes of
the events, e.g., the type and the parameters of the event. In
the end, a pruned list is generated with the intersection of
the two VM lists in Line 11 and this result will be returned
to the incremental verification module.
Example 4. We illustrate how pruning works for Example 3.

We first check the policy“VMBob,*, Deny” to identify
Bob’s VM as the only VM under the policy. Since the
attach port event may affect reachability under the same
subnet, which applies to Bob’s VM, the pruning module
intersects the two lists and generates a pruned list with
only Bob’s VM. As a result, instead of verifying all
the eight pairs of reachability, the verification will only
need to be performed between Bob’s VM and the newly
created VM.

Algorithm 2: PRUNING

Input: Event, Policies, RadixTries
Output: PrunedList

1 for each Policy ∈ Policies do
2 if Policy.TenantID = Event.TenantID then
3 Add Policy.VMs to VMsUnderTenantPolicy
4 if VMsUnderTenantPolicy is not empty then
5 if event is a Routing event then
6 for each RouterInterface ∈

RadixTries.RouterInterfaces do
7 for each port ∈ RounterInterface do
8 Add get(VM) to VMsUnderEventScope
9 else

10 Add get(VM) to VMsUnderEventScope
11 PrunedList←

VMsUnderTenantPolicy∩VMsUnderEventScope
12 return PrunedList

Fig. 8: Example of TOSCA [24] translated into HOT [25] i.e.,
interpretable by VMGuard.

3.6 NFV Adaptation

The design of VMGuard is meant to handle verification of
network isolation both in Cloud and NFV environments.
Therefore, the design presented earlier in this section does
not require any change to adapt it to the NFV environment.
The main effort is to identify the NFV-specific policies re-
lated to network isolation from the NSD written in TOSCA.
In the following, we describe this in more details.

NFV Policy Recommender. VMGuard utilizes the network
described in HOT to identify all isolation policies for the
tenant by analyzing all-pair reachability to other tenants.
The identified policies are presented to the tenant in or-
der to select the applicable ones. Those policies are then
enforced either proactively or in the intercept-check mode
as discussed in Section 3.1.

Figure 8 illustrates an example of a mapping between
TOSCA network service requirements and HOT definition
of the virtual resources. The latter is composed of virtual
resources such as VMs, ports, routers, routing interfaces,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

etc., representing the tenants network. Algorithm 3 uses
HOT templates to generate the policies. Therein, in Line
1, virtual resources requested by heat and expressed in
YAML format are extracted. Lines 2-4 show queries to collect
the requested network resources (virtual machines, ports,
security group rules, routing interfaces, and router) and add
them to a list NetworkResource. A state fork in Line 5 and
all-pair reachability in-scope of tenant is derived in Line 6
using function IntraTenantAllPair. Reachability is identified
in Lines 8-11, based on which policies are produced with
corresponding actions. Line 12 returns the policies applica-
ble to network isolation within the tenant.

Algorithm 3: POLICY RECOMMENDER

Input: Heat Orchestration Template
Output: Policies

1 Resources = ParseYAML(HOT)
2 for each Resource ∈ Resources do
3 if Resource.Type ==

(Server/Subnet/Port/Router/Interface/Security
Group) then

4 NetworkResource=Resource;
5 Graph = Fork(NetworkResource);
6 Reachability = IntraTenantAllPair(Graph);
7 for each Result ∈ Reachability do
8 if Result==Reachable then
9 Policies=policies(Result,Allow);

10 else
11 Policies=policies(Result,Deny);
12 return Policies

Example 5. A TOSCA extract in Figure 8 (left), comprises
a section of network service configurations, i.e., a VNF.
The VNF component (i.e., VDU) directly maps to a cloud
resource VM i.e., VMBob in our motivating example.
Some TOSCA components are abstraction of cloud re-
sources. For instance, a Connection Point (CP) abstracts
PortA3, RA1, etc. Similarly, all components from TOSCA
map to HOT, represented in Figure 8 (right).

4 IMPLEMENTATION

VMGuard is implemented as a module deployed on top of
OpenStack [17], a widely used open-source cloud manage-
ment platform, and Tacker [27], the official OpenStack NFV
MANO project. The latter builds a VNFM and an NFVO on
top of Opentack as a VIM. We also installed prerequisites
such as Heat [27], Mistral [27] and Barbican [27]. OpenStack
Heat deploys workflows that are created using Mistral and
Barbican, which facilitates secure communications.

Figure 9 illustrates the high-level architecture of VM-
Guard. There are mainly three phases. First, the initialization
phase is for pre-processing the given policies and depen-
dency models, which is conducted only once. Second, the
run-time phase is for event-driven verification and is con-
ducted with each successive event. Third, the audit phase is
to ensure the correctness and performed periodically. Each
phase is detailed as follows.
Initialization Phase. Before initialization, the dependency
model is generated for each tenant with the logs collected

TABLE 2: Statistics of the datasets

Dataset Tenants VMs Routers Subnets Policies per tenant
DS1 50 4,362 300 525 100
DS2 100 10,168 600 1,288 200
DS3 150 14,414 800 1,828 300
DS4 200 20,207 1,000 2,580 400
DS5 250 25,246 1,200 3,210 500

from two OpenStack services, Nova (compute) and Neutron
(network). The raw logs are processed to feed into the
Bayesian network tool, SMILE & GeNIe [28] in order to
generate the dependency model. The configuration informa-
tion from the Nova and Neutron databases are processed
to generate the radix tries. The heat templates are fetched
and network isolation policies are identified by the policy
processor (as discussed in Section 3.6). Using dependency
model, VMGuard identifies the tenants infrastructure and
proposes related network isolation policies. The provided
policies are converted into the intra-tenant format, as dis-
cussed in Section 6, and an initial verification is conducted
to check the compliance of the current cloud state.

Run-Time Phase. An audit middleware [29] is used to
intercept each Neutron and Nova events. We leverage the
TenantGuard [14] implementation, written in Java, and ex-
tend it with our pruning module. We also implement the
deep object copy [30], and multi-threading [31] for pre-
computation (on multiple copies of the state in parallel).
The intercept-check verification threads are executed with a
higher priority because they require immediate processing,
whereas the pre-computation thread executes with a lower
priority. The threads are initialized with the tenant IDs
to assist the thread management. At any moment, either
the pre-computation thread or the intercept-check thread is
executed for a tenant.

Audit Phase. An audit phase is performed periodically as
a thread with a low priority and ID as audit to distinguish
it from run-time threads. The audit phase performs sync-
check, state check and log learning, discussed in Section 6.
A sync-check is performed by graph comparison [32], using
JGraphT [33], a Java graph library, to verify the graphical
representation of the state. The state check is performed
using a special verification fork that takes corresponding
states and all the policies as input. The log learner collects
Nova and Neutron logs from Ceilometer [34], the telemetry
service in OpenStack, and converts them to the input format
for GeNIe to update the tenant’s dependency model.

5 EXPERIMENTS

In this section, we first describe experimental settings in
Section 5.1 and then present experimental results with both
real and synthetic data in Section 5.2.

5.1 Experimental Settings

Our test cloud is an OpenStack release Mitaka with one
controller node and 80 compute nodes. Each node runs
Ubuntu 16.04 server on an Intel i7 dual-core CPU with 2GB
memory. The Neutron network driver is L2 OpenVSwitch
with the L3 agent plugins, which is a popular networking

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

deployment. To perform the experiments we run VMGuard
over the controller node.

We use the cloud schema presented in the recent Open-
Stack survey [35] as a basis for our simulation. Our datasets
are derived based on data collected from a real virtual
infrastructure deployed in-house by one of the largest
telecommunication vendor. Table 2 describes the statistics
about our datasets that quantifies the number of tenants,
virtual resources and policies per tenant. We simulate an
environment with maximum 250 tenants and 25,246 VMs,
which OpenStack survey [35] state as largest size cloud. We
conduct the experiment on five different datasets varying
the number of tenants from 50 to 250, policies per tenant
from 100 to 500, subnets from 500 to 3,200, routers from
300 to 1,200, while keeping the number of VMs fixed to
100 per tenant. We believe these datasets represent a wide-
range of real-life medium to large size cloud setups. Every
experiment is performed at least 100 iterations.

Table 3 lists the events that we used in the experiments,
which can be categorized into three levels, namely, VM-
level, subnet-level and router-level. Each event can affect
the verification results differently as shown in the third
column. Simply, the higher the network hierarchy level of
the component affected by the event is, the larger is the
number of affected resources. This set of events is used in
evaluating VMGuard.

5.2 Performance of VMGuard

We evaluate VMGuard in this section from multiple phases
with different enabled modules. In this section, we refer
VMGuard0 as the implementation of event-driven incremen-
tal state-based verification tool (disabling both pruning and
proactive modules of VMGuard), VMGuard1 as the version
of VMGuard with only proactive module disabled, and
VMGuard2 as the complete version of VMGuard (incremen-
tal + pruning + proactive).

TABLE 3: Events used in the experiments in three levels,
namely, VM-level, Subnet-level, and Router-level, with the
resources, which verification is affected

Levels Events Affected Resources

VM-level

Create VM None
Delete VM only the deleted VM
Attach Security Group only the VM with this security group
Delete Security Group only the VM with this security group
Attach Public IP None
Detach public IP only the VM with this IP

Subnet-level

Attach Port all VMs under the subnet
Delete Port all VMs under the subnet
Create Network None
Delete Network all VMs under the subnet

Router-level Create Router None
Delete Router all VMs reachable through this router
Create Interface None
Detach Interface all VMs reachable through this router

5.2.1 Initialization Phase

We first compare the performance of our work with the
state-of-art solution, TenantGuard [14] for the initialization
phase. All the experiment results are gathered from a single
machine. Parallelization can still be applied to further im-
prove the performance, which is considered as future work.
The first set of experiments compare the time consumption
for the initialization phase including data collection and
initial verification.

	�� 	�� 	�� 	�� 	��
	�������

���
���
���
���
���
���
���
���
���

�
�
��
��

�����
���� ��
����

(a) Data Collection

�
�
�
�
�

�������

�

��

��

��

	�

���

��
�
��
��

����������� �������

(b) Initialization

Fig. 10: The time consumption for VMGuard and Tenant-
Guard [14] in (a) data collection, (b) the initialization phase

Fig. 9: The high-level architecture of VMGuard

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Results and Implications for Initialization. In general, the
one-time initialization phase takes longer than other phases.
Due to the extra policy processing module, compare to
TenantGuard, VMGuard requires a slightly longer time to
finish data collection as shown in Figure 10(a). However,
VMGuard performs much better in initialization verifica-
tion. We observe that TenantGuard’s initialization time in-
creases exponentially with the size of the cloud, whereas
VMGuard shows negligible increase. This is mainly because
the scope of reachbility generation for TenantGuard is di-
rectly correlated with the size of the cloud, while the scope
of the verification for VMGuard only relies on the tenant
specified policies, which will remain within a reasonable
size comparing with the full size of the cloud.

5.2.2 Incremental Verification and Pruning
TenantGuard is originally designed to work on the static
snapshot of the virtual infrastructure [14]. Making Tenant-
Guard incremental and suitable for an event-driven applica-
tion faces many implementation challenges (some of these
are demonstrated in Section 3.1). In implementing VM-
Guard, we have tackled those challenges and, by disabling
both the pruning and proactive modules of VMGuard, we
basically obtain an incremental version of TenantGuard, i.e.,
VMGuard0. In the second set of the experiments, we com-
pare VMGuard0 (incremental) and VMGuard1 (incremen-
tal+pruning) with events selected from different hierarchical
levels of the virtual infrastructure. Figures 11(a), (b) and
(c) correspond to VM-level, subnet-level, and router-level
events, respectively.

Results and Implications for Incremental Verification and
Pruning. Both VMGuard0 and VMGuard1 perform verifica-
tion within a promising time range (0.4s to verify a high
complexity event, router level event that impacts more VMs
to be verified, in the largest dataset) for different types of
events. We can observe that VMGuard1 takes significant less
time than VMGuard0 in all cases, which clearly demonstrates
the benefit of the pruning module. When comparing among
the three figures, we can see the time consumption for
VMGuard0 and VMGuard1 is similar in both Figures 11(a)
and (b). The main reason behind this observation is that, al-
though attach security group rule and attach port are the events
at two different levels, the scope of these two events is
similar (i.e., the VMs that directly correspond to the security
group rule or the port). Other updating/deletion/addition
events at these two levels are expected to share a similar
trend. Also, as shown in Figure 11(c), the delete router event
requires significantly longer verification time, because the
verification depends on the number of subnets under the
router and the number of VMs under each subnet; the scope
of the verification is therefore larger than with the previous
two events (even the add router event would generate less
verification overhead than the delete router event).

5.2.3 Proactive Verification
The third set of the experiments evaluates the efficiency of
the proactive module, namely, VMGurad2 (the complete ver-
sion of VMGuard with all modules enabled). Since whether
the proactive verification is triggered depends on the given
threshold, VMGuard1 can be considered as a special case of

VMGuard2 by setting the threshold as 1 (means no event
can trigger the proactive module). In this experiment, we
use real data collected from a real world community cloud
hosted at one of the largest telecommunications vendors to
obtain the dependency model and extract the sequences of
events.

Results and Implications for Efficiency of Proactive Verifi-
cation. Figure 12(a) shows the verification time comparison
between the VMGuard1 (intercept-check) and the VMGuard2
(proactive). The latter one requires significantly less verifi-
cation time, which demonstrates the benefit of the proactive
module. The events used in this experiment span three
levels, and our experiment results show that the higher
hierarchical events, e.g., router-level events, require less
processing time in VMGuard2 than the lower hierarchical
events, e.g., VM-level events. This mainly because higher hi-
erarchical events naturally contain less number of predicted
events than the lower hierarchical events.

The upper figure of Figure 12(b) shows the run-time
memory consumption of VMGuard0 as well as the results of
VMGuard1. The high memory consumption for VMGuard0 is
mainly due to its need to maintain a large number of pair-
wise reachability. After the initialization phase, the memory
consumption stays nearly plateau because each successive
event will only affects a limited amount of reachability.
Comparing VMGuard1 to VMGuard0, pruning shows a pos-
itive correlation with memory and CPU consumption as
less pair-wise reachability needed to be calculated; thus,
VMGuard1 shows that it requires only 30% of the CPU and
memory of VMGuard0. Since VMGuard1 has less event to
calculate, different than VMGuard0 it shows a drop in the
CPU consumption during idle time.

The proactive module in VMGuard shorten the process
time for the incoming event by consuming more CPU and
memory to precalculate multiple predicted events. In this
set of the experiment, we evaluate the cost of proactive
verification among various thresholds.

Results and Implications for Cost of Proactive Verifica-
tion. The upper figure of Figure 12(c) shows the run-time
memory consumption of VMGuard2 under two different
thresholds, as well as the results of VMGuard1, which is
the special case of VMGuard2 with the threshold equals
to 1. Comparing VMGuard2 (under both threshold values)
to VMGuard1, the number of triggered pre-computations
show a positive correlation with the memory consumption.
During the idle time, the time intervals between 10s to 17.5s,
VMGuard2

0.5 finishes the pre-computation and shares the
same memory consumption as VMGuard1; however, due
to the larger number of pre-computation candidate events,
VMGuard2

0.1 still shows a higher memory consumption dur-
ing idle time to finish the ongoing pre-computation tasks.
The CPU consumption shares almost the same trend as
the memory consumption. It is also worth to notice, even
though comparing to VMGuard1, both VMGuard2d require
more memory and CPU to precalculate predicted event,
they still require less resources than VMGuard0 as shown
in Figure 12(b).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

��
��
��
��
��

�����

�
�
�
�
	

��
��
��
��
�	

��
�
��
�
��

(a) Attach Security Group

��
��
��
��
��

�����

�
�
�
�
	

��
��
��
��
�	

��
�
��
�
��

VMGuard1 VMGuard0

(b) Attach Port

�	� �	� �	� �	� �	�
��������

�

���

���

���

���

�
��
�
��

(c) Delete Router

Fig. 11: The performance of VMGuard0 (incremental) and VMGuard1 (incremental+pruning) for (a) VM-level, (b) subnet-
level, and (c) router-level events

��

���

���
VMGuard2 VMGuard1

��! �� ��! ��
�� ������

�� 	��� ���
�

���!�� #

��!�

��� !��
�������

�"��

�
�
�
�
�
�

��
�

��
�

��

(a) Time consumption

�

���

���

��

�
��

��
��
�
��

VMGuard0 VMGuard1

��� ��	 	�� ��	 ���� ���	 �	�� ���	 ����
����������������

�
��
��

�

��

��
��
��
��

�

(b) VMGuard0 vs. VMGuard1

�
	�

���
�	�
���
�	�

�
��

��
��

�
��

VMGuard1 VMGuard0.5
2 VMGuard0.1

2

��� ��	 	��
�	 ���� ���	 �	�� �
�	 ����
���������������

�
	

��
�	
��
�	
��

�
��

��
��

��
��

�

(c) VMGuard1 vs. VMGuard2
0.5 vs

VMGuard2
0.1

Fig. 12: The performance for (a) VMGuard2 and VMGuard1 vs. Time, (b) VMGuard1 and VMGuard0 vs. Memory (up) and
CPU (bottom), and (c) VMGuard2 with different thresholds (1, 0.5, 0.1) vs. Memory (up) and CPU (bottom)

5.2.4 Scalability
Finally, we conduct this experiment to test the scalability of
VMGuard. As shown in Figure 12, the proactive module
significantly reduces the performance time of VMGuard.
For evaluation purposes, we disable this module in the
scalability tests. Note that this configuration represents the
worst case scenario, i.e., VMGuard1.
Results and Implications for Scalability. Overall, we
achieve promising results while scaling up the network with
different structure and configurations with different types of
events. In this experiment, we observe that the router event
(e.g., delete router) and router interface event (e.g., detach
interface) require more time during the verification. This
is mainly because each event in router or router interface
level is associated with a larger number of verification
candidates than a event happen in a lower hierarchical level.
In VMGuard, the intercept check module verifies all the
VMs in the pruned list, which means the larger pruned list,
the longer verification time; when the pruned list stays the
same, the verification time would be constant as well. As we
discussed in Section 3.5, the pruned list is directly associated
with two lists: the number of VMs under the policy and
the number of VMs under the impact of the event. In
Figure 13(a), the number of VMs under the policy stays the
same, however, the impacted number of VMs under router

and router interface event increases with the number of VMs
per subnet. Therefore, we can observe the increase of time
consumption for both types of events. Since other events
mainly contain VM level events, the number of impacted
VMs is the same as the number of VMs under the policies.
Thus, the verification time stays the same while the number
of VMs per subnet increases. Different than Figure 13(a),
only the impact of router event increases with the number of
subnet per router in Figure 13(b); we observe the increase of
router event and a constant trend for the other two events. In
Figure 13(c), the number of VMs under the policy increases
since the number of policy per tenant increases. In other
words, the number of pruned list increases in all level of
events; we observe the increase of time consumption for all
the events.

6 DISCUSSION

Effect of a Wrong Prediction. VMGuard pre-computes ver-
ification for a predicted event. If there is a wrong prediction
resulting from the inaccuracy of our dependency model, the
pre-computed results are not useful and hence, VMGuard
works as an intercept-check solution in such circumstances.
To continuously improve the accuracy of our dependency
model, we periodically update this model from cloud logs

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

��� ��� ��� 	��
��
�� ������$���#

�

��
�

��
�

��

��
�
��
�
"�

���

� $#�!�%��# � $#�!���#�!�����%��# �#��!�%��#"

��� ��� ��� 	��
��
�� ���$���#�� $#�!

�
	
�
�
��
��
�	

��
�
��
�
"�

���

�� ���� �
�� ���� �
��
�� ��� �����"������#

�

���

���

���

	��

��
�
��
�
"�

���

Fig. 13: Performance comparison by varying the # of (a) VMs per subnet, (b) subnet per router, and (c) policies per tenant

TABLE 4: Comparing existing solutions with VMGuard

Proposal Methods Feature Scope
Retroactive I-C Proactive Incr. Paral. Real-Time Pruning M-Thread Vir. Net. D. Plane

Weatherman [15] Graph-theoretic X X X X -
Congress [20] Datalog X - -

PVSC [36] Custom algorithms X X X - -
LeaPS [16] Custom + Bayesian X X X - -
NoD [13] Datalog X X X X X

Plotkin et al. [37] SMT Solver X X X X
Madi et al. [38] CSP Solver X X X

Cloud Radar [39] Graph-theoretic X X -
TenantGuard [14] Custom algorithms X X X X X

VMGuard Custom algorithms X X X X X X X X X

in the audit phase. In addition, to be more accurate in the
prediction, we incorporate structural dependencies imposed
by the cloud platform (e.g., a subnet cannot be deleted
before detaching all its ports).

Choice of Threshold Values. In VMGuard, the amount
of pre-computation effort is controlled through a threshold
value. A threshold is provided by the cloud provider based
on experiences, using which cloud provider can control the
prediction rate based on his/her cloud workload.

Correctness of VMGuard Inputs. The regular operation
of VMGuard relies on the correctness of the extraction of
event parameters from the cloud management API, and
identification of reachability effecting events. Therefore, to
detect any flaws in those steps and further improve them,
VMGuard introduces an audit phase, which periodically
performs a full (not incremental) state-based verification.

Supported Policies by VMGuard. VMGuard is designed to
verify policies related to virtual network isolation. A list of
security policies (defined by the cloud provider and/or its
tenants) is an input to the VMGuard system. These policies
can vary in nature, such as inter-tenant (i.e., cross-tenant
reachability), and intra-tenant. As an example, VMGuard
supports the list of policies proposed in NoD [13]. For
the ease of pruning and verification, VMGuard converts
an inter-tenant policy into two intra-tenant policies where
destination is the external network.

Cross-Platform Portability. Our work can potentially be ex-
tended to other cloud platforms, such as Amazon EC2 [40],
Google GCP [41], Microsoft Azure [42] and VMware
vCD [43]. Similar to TenantGuard [14], the virtual infrastruc-

ture model can be portable over different cloud platforms.
Also, The similarities between management APIs and cloud
logs in different cloud platforms show the potentiality of
adapting our solution to those platforms [44], [45], [46], [47],
[48].
Attacks Exploiting Unknown Vulnerabilities. As a state-
based verification tool, VMGuard can identify violation of
a predefined security policy, e.g., reachability between two
specific VMs (e.g., VM1 and VM2) is not allowed. The
violation could be caused by a misconfiguration, or exploit-
ing a known or unknown vulnerability. VMGuard will not
identify the root cause (i.e., which vulnerability is exploited)
for this violation, but any operation that would cause such
a violation could be blocked by VMGuard. Therefore, in
this sense, VMGuard is able to monitor and tackle known
and unknown vulnerabilities that may lead to a potential
violation against user defined policies.

7 RELATED WORK

Table 4 summarizes the comparison between existing works
and VMGuard. The first and second columns enlist ex-
isting works and their verification methods, respectively.
The next eight columns compare these works according
to different features, i.e., retroactive, intercept-check (I-C),
proactive, incremental (Incr.), parallel workload distribution
(Paral.), pruning-based verification, and multi-threading to
manage multiple requests (M-Thread). The last two columns
compare the scope of network isolation works, i.e., virtual
networks (Vir. Net.), and data plane (D. Plane) in such
networks. The main benefit of VMGuard over those works is

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

that VMGuard provides a real-time response while verifying
virtual network isolation in the data plane. To that end,
VMGuard’s unique combination of features is: proactive,
incremental and pruning.
Network Isolation Verification. There exist several works
(e.g., [13], [14], [37], [49]) for virtual network isolation ver-
ification. Among them, NoD [13], Plotkin et al. [37] and
TenantGuard [14] adopt a retroactive approach, which de-
tects an isolation breach after the fact. Specifically, NoD [13],
is a logic-based verification engine that checks reachability
policies using Datalog. Plotkin et al. [37] leverage the reg-
ularities existing in data centers to lessen the verification
overhead using bi-simulation and modal logic. However,
both of these works cause hours to days delay in verifying
reachability. Whereas, TenantGuard [14] achieves verifica-
tion time of 18 minutes for the same dataset by performing
a hierarchical verification approach. However, for policy
verification, TenantGuard relies on Congress [20], which
causes a significant delay (as discussed in Section 2). Un-
like these works, VMGuard achieves a practical response
time (e.g., in few milliseconds), as reported in Section 5
by adopting a proactive approach. There exist some other
works (e.g., [49], [50], [51], [52], [53], [54]) for SDN-based or
traditional networks. Among them, NetPlumber [49] lever-
ages verifying hypotheses before deploying, but it’s only
applicable to SDN-based networks. In contrast, VMGuard
verifies hypothesis in the virtual network environment.
Proactive Verification. There exist few proactive verifica-
tion solutions (e.g., [15], [16], [20], [36]) for clouds. Weath-
erman [15] performs proactive verification on the virtual
infrastructure based on the future change plan. Similarly,
Congress [20] performs proactive verification over the pro-
posed hypothetical configuration for the cloud. Both of
those works rely on manual identification of future plan,
and otherwise, cause a significant delay as an intercept-
and-check solution. Whereas, VMGuard adopts an auto-
mated proactive approach (based on dependency model),
and achieves response time in few milliseconds. Similar to
VMGuard, PVSC [36] and LeaPS [16] achieve response time
in milliseconds. However, those works rely on signatures
and cannot detect many isolation breaches (as demonstrated
in Section 3). To that end, VMGuard adopts a state-based
approach and hence, overcomes this limitation.

8 CONCLUSION

In this paper, we addressed the major issues (e.g., ineffi-
ciency and inaccuracy) in the existing virtual network isola-
tion verification approaches and proposed VMGuard, which
is a state-based proactive approach to efficiently verify
network isolation policies in a large scale virtual infrastruc-
ture. To achieve better efficiency, VMGuard proactively con-
ducted the verification of future events. On the other hand,
to ensure the effectiveness, VMGuard simulated all possible
impacts on the current state and verified all those simulated
states. We also showed how VMGuard can be seamlessly
used to verify network isolation between network services
deployed by multiple tenants in NFV. Furthermore, we
integrated VMGuard with OpenStack for Cloud and NFV
deployments, and evaluated its performance and efficiency
through extensive experiments using both real and synthetic

data. As future work, we will investigate the feasibility of
integrating a formal policy specification language with our
solution to enhance its policy support.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work was supported partially
by the Natural Sciences and Engineering Research Council
of Canada and Ericsson Canada under the Industrial Re-
search Chair (IRC) in SDN/NFV Security.

REFERENCES

[1] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud
computing: Opportunities and challenges,” Information Sciences,
vol. 305, pp. 357–383, 2015.

[2] Cloud Security Alliance, “Security guidance for critical areas
of focus in cloud computing v 4.0,” available at: https://
cloudsecurityalliance.org/working-groups/security-guidance.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-
of-the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, 2010.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[5] ETSI, “Network Functions Virtualisation,” available at: https://
portal.etsi.org/NFV/NFV White Paper.pdf.

[6] R. Kumar and R. Goyal, “On cloud security requirements, threats,
vulnerabilities and countermeasures: A survey,” Computer Science
Review, vol. 33, pp. 1–48, 2019.

[7] O. Ali, J. Soar, and J. Yong, “Challenges and issues that influence
cloud computing adoption in local government councils,” in IEEE
International Conference on Computer Supported Cooperative Work in
Design (CSCWD’17), 2017, pp. 426–432.

[8] V. D. Piccolo, A. Amamou, K. Haddadou, and G. Pujolle, “A sur-
vey of network isolation solutions for multi-tenant data centers,”
IEEE Communications Surveys and Tutorials, vol. 18, no. 4, pp. 2787–
2821, 2016.

[9] Amazon Web Services, “Amazon web services: Overview of se-
curity processes,” 2017, available at: https://d1.awsstatic.com/
whitepapers/aws-security-whitepaper.pdf.

[10] ISO Std IEC, “Iso 27002:2005. information technology-security
techniques,” 2005, available at: http://www.iso27001security.
com/html/27002.html.

[11] ——, “Iso 27017. information technology- security techniques,”
2013, available at: http://www.iso27001security.com/html/27017.
html.

[12] Cloud Security Alliance, “Cloud control matrix ccm v3.0.1,” 2014,
available at: https://cloudsecurityalliance.org/research/ccm/.

[13] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Vargh-
ese, “Checking beliefs in dynamic networks,” in USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’15),
2015, pp. 499–512.

[14] Y. Wang, T. Madi, S. Majumdar, Y. Jarraya, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Tenantguard: Scalable
runtime verification of cloud-wide vm-level network isolation,”
in Network and Distributed System Security Symposium (NDSS’17),
2017.

[15] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim, “Proactive
security analysis of changes in virtualized infrastructures,” in
Annual Computer Security Applications Conference (ACSAC’15), 2015.

[16] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Leaps: Learning-based
proactive security auditing for clouds,” in European Symposium on
Research in Computer Security (ESORICSs’17), 2015, pp. 265–285.

[17] Openstack, “Openstack : Cloud operating system,” 2019, available
at: https://www.openstack.org/.

[18] OpenStack, “Ossa-2014-008: Routers can be
cross plugged by other tenants,” available at:
https://security.openstack.org/ossa/OSSA-2014-008.html.

[19] ——, “Nova network security group changes are not applied to
running instances,” 2015, available at: https://security.openstack.
org/ossa/OSSA-2015-021.html.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

[20] OpenStack, “Openstack congress,” 2019, available at: https://
wiki.openstack.org/wiki/Congress.

[21] ETSI, “Network FunctionsVirtualisation (NFV) Release 2;
Protocols and Data Models; RESTful protocols specifi-
cation for the Ve-Vnfm Reference Point,” available at:
https://www.etsi.org/deliver/etsi gs/NFV-SOL/001 099/
002/02.03.01 60/gs NFV-SOL002v020301p.pdf.

[22] OpenStack, “OpenStack Documentations,” available at: https://
docs.openstack.org/.

[23] OASIS, “Open standards, Open source,” available at: https://
www.oasis-open.org/.

[24] ——, “TOSCA Simple Profile for Network Functions Virtual-
ization (NFV),” available at: http://docs.oasis-open.org/tosca/
tosca-nfv/v1.0/tosca-nfv-v1.0.html.

[25] OpenStack, “Heat : OpenStack Orchestration,” available at:
https://docs.openstack.org/heat/latest/template guide/hot
guide.html.

[26] J. Corbet, “Trees i:radix trees,” 2018, available at: https://lwn.net/
Articles/175432.

[27] Oracle, “Tacker - OpenStack NFV Orchestration,” available at:
https://wiki.openstack.org/wiki/Tacker.

[28] BayesFusion, “Genie and smile,” 2019, available at: https://www.
bayesfusion.com.

[29] Cloud auditing data federation, “Pycadf: A python-based cadf
library,” 2019, available at: http://docs.openstack.org/developer/
keystonemiddleware/audit.html.

[30] Wikipedia, “Object copying,” 2019, available at: https://en.
wikipedia.org/wiki/Object copying\#Deep copy.

[31] Oracle, “Java: Processes and threads,” 2019, available at:
https://docs.oracle.com/javase/tutorial/essential/concurrency/
procthread.html.

[32] R. J. W., “Definitions and examples,” in Introduction to Graph
Theory, Second Edition, 1979.

[33] JGraphT, “A java library of graph theory data structures and
algorithms,” 2019, available at: https://jgrapht.org/.

[34] OpenStack, “Openstack ceilometer project,” 2019, available at:
https://docs.openstack.org/ceilometer/latest/.

[35] Openstack, “Openstack user survey,” 2017, available at: https://
www.openstack.org/assets/survey/April2017SurveyReport.pdf.

[36] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Proactive verification of
security compliance for clouds through pre-computation: Applica-
tion to openstack,” in European Symposium on Research in Computer
Security (ESORICS’16), 2015, pp. 47–66.

[37] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Principles of Programming Languages (POPL’16), 2016.

[38] T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and
L. Wang, “Auditing security compliance of the virtualized infras-
tructure in the cloud: Application to openstack,” in Conference on
Data and Application Security and Privacy (CODASPY’16), 2015, pp.
195–206.

[39] S. Bleikertz, C. Vogel, and T. Groß, “Cloud radar: near real-time de-
tection of security failures in dynamic virtualized infrastructures,”
in Annual Computer Security Applications Conference (ACSAC’14),
2015, pp. 26–35.

[40] Amazon Web Serives EC2, “Aws ec2,” 2019, available at: https:
//aws.amazon.com/ec2/.

[41] Google, “Google cloud platofrm,” 2019, available at: https://
cloud.google.com/.

[42] Microsoft, “Microsoft azure,” 2019, available at: https://azure.
microsoft.com/en-us/.

[43] VMware, “VMware Cloud,” 2019, available at: https://cloud.
vmware.com/.

[44] OpenStack, “Openstack networking api v2.0,” 2018, available at:
https://developer.openstack.org/api-ref/network/v2.

[45] ——, “Openstack networking api v2.0,” 2018, available
at: https://docs.aws.amazon.com/networkmanager/latest/
APIReference/API Operations.html.

[46] ——, “Openstack networking api v2.0,” 2018, available at: https:
//cloud.google.com/compute/docs/reference/rest/v1.

[47] ——, “Openstack networking api v2.0,” 2018, available at: https:
//docs.microsoft.com/en-us/rest/api/virtual-network/.

[48] ——, “Openstack networking api v2.0,” 2018, available at: https:
//code.vmware.com/apis/722.

[49] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space

analysis,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI’13), 2013, pp. 99–111.

[50] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,” in
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’13), 2013, pp. 15–27.

[51] P. Kazemian, G. Varghese, and N. McKeown, “Header space
analysis: Static checking for networks,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI’12), 2012, pp.
113–126.

[52] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan,
“Fast control plane analysis using an abstract representation,” in
ACM SIGCOMM (SIGCOMM’16), 2016, pp. 300–313.

[53] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. D. Millstein, “A general approach to network
configuration analysis,” in USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’15), 2015, pp. 469–483.

[54] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and conquer to verify forwarding
tables in huge networks,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI’14), 2014, pp. 87–99.

Gagandeep Singh Chawla Gagandeep Singh
Chawla is currently working as Security Archi-
tect with SAP Security, Montreal, Canada. He
received his master’s degree in information sys-
tem security from Concordia University, Mon-
treal, Canada. His research interests include se-
curity of public/private clouds, containers, con-
tainer orchestration platforms and Software De-
fined Networks (SDN).

Mengyuan Zhang Mengyuan Zhang is an Ex-
perienced Researcher at Ericsson Research,
Montreal, QC, Canada. She received her Ph.D.
in Information and Systems Engineering from
Concordia University in Montreal. Her research
interests include security metrics, attack surface,
cloud computing security, and applied machine
learning in security. She has published several
research papers and book chapters on the afore-
mentioned topics in peer-reviewed international
journals and conferences such as TIFS, TDSC,

CCS, ESORICS.

Suryadipta Majumdar Suryadipta Majumdar is
currently an Assistant Professor in Concordia In-
stitute for Information Systems Engineering (CI-
ISE), Concordia University, Montreal, Canada.
Previously, Suryadipta was an Assistant Profes-
sor in the Information Security and Digital Foren-
sics department at University at Albany – SUNY,
USA. He received his Ph.D. on cloud security
auditing from Concordia University. His research
mainly focuses on cloud security, Software De-
fined Network (SDN) security and Internet of

Things (IoT) security.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

Yosr Jarraya Yosr Jarraya is a Master Re-
searcher at Ericsson since 2016 focusing on
security and privacy in cloud, SDN and NFV.
She received a Ph.D. in electrical and com-
puter engineering from Concordia University
Montreal, Canada, in 2010. She has several
patents granted or pending. She co-authored
two books and over 40 research papers in peer-
reviewed international journals and conferences
such as TOPS, TIFS, TDSC, JCS, NDSS, and
ESORICS.

Makan Pourzandi Makan Pourzandi received
the M.Sc. degree in parallel computing from
École Normale Supérieure de Lyon, France, and
the Ph.D. degree in computer science from the
University of Lyon I, France. He is currently a
Researcher with Ericsson, Canada. He has over
15 years of experience in security for telecom
systems, cloud computing, distributed systems
security, and software security. He is the inventor
of over 28 patents granted or pending. He has
published over 50 research papers in peerre-

viewed scientific journals and conferences.

Lingyu Wang Lingyu Wang is a professor
in the Concordia Institute for Information Sys-
tems Engineering (CIISE) at Concordia Uni-
versity, Montreal, Quebec, Canada. He holds
the NSERC/Ericsson Industrial Research Chair
(IRC) in SDN/NFV Security. He received his
Ph.D. degree in Information Technology in 2006
from George Mason University. His research in-
terests include SDN/NFV security, cloud com-
puting security, network security metrics, soft-
ware security, and privacy. He has co-authored

seven books, two patents, and over 100 refereed conference and journal
articles including many published at top journals/conferences, such as
TOPS, TIFS, TDSC, TMC, JCS, S&P, CCS, NDSS, ESORICS, PETS,
ICDT, etc. He is serving as an associate editor for IEEE Transactions
on Dependable and Secure Computing (TDSC) and Annals of Telecom-
munications (ANTE) and an assistant editor for Computers & Security,
and he has served as the program (co)-chair of seven international
conferences and the technical program committee member of over 150
international conferences.

Mourad Debbabi Mourad Debbabi is a Full
Professor at the Concordia Institute for Infor-
mation Systems Engineering and Interim Dean
at the Gina Cody School of Engineering and
Computer Science. He holds the NSERC/Hydro-
Quebec Thales Senior Industrial Research Chair
in Smart Grid Security and the Concordia Re-
search Chair Tier I in Information Systems Se-
curity. He is also the President of the National
Cyber Forensics and Training Alliance (NCFTA)
Canada. He is a member of CATAAlliance’s Cy-

bercrime Advisory Council. He serves/served on the boards of Canadian
Police College, PROMPT Québec and Calcul Québec. He is the founder
and one of the leaders of the Security Research Centre at Concordia
University. Dr. Debbabi holds Ph.D. and M.Sc. degrees in computer
science from Paris-XI Orsay, University, France. He published 5 books
and more than 300 peer-reviewed research articles in international
journals and conferences on cyber security, cyber forensics, smart grid,
privacy, cryptographic protocols, threat intelligence generation, malware
analysis, reverse engineering, specification and verification of safety-
critical systems, programming languages and type theory. He super-
vised to successful completion 32 Ph.D. students, 76 Master students
and 14 Postdoctoral Fellows. He served as a Senior Scientist at the
Panasonic Information and Network Technologies Laboratory, Prince-
ton, New Jersey, USA; Associate Professor at the Computer Science
Department of Laval University, Canada; Senior Scientist at General
Electric Research Center, New York, USA; Research Associate at the
Computer Science Department of Stanford University, California, USA;
and Permanent Researcher at the Bull Corporate Research Center,
Paris, France.

