
PERMON: An OpenStack Middleware for Runtime
Security Policy Enforcement in Clouds

Azadeh Tabiban∗, Suryadipta Majumdar∗, Lingyu Wang∗ and Mourad Debbabi∗
∗Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada

Email: {a_tabiba,su_majum,wang,debbabi}@ciise.concordia.ca

Abstract—To ensure the accountability of a cloud environment,
security policies may be provided as a set of properties to be
enforced by cloud providers. However, due to the sheer size
of clouds, it can be challenging to provide timely responses to
all the requests coming from cloud users at runtime. In this
paper, we design and implement a middleware, PERMON, as a
pluggable interface to OpenStack for intercepting and verifying
the legitimacy of user requests at runtime, while leveraging our
previous work on proactive security verification to improve the
efficiency. We describe detailed implementation of the middleware
and demonstrate its usefulness through a use case.

Keywords—Access Control, Event Interception, Middleware,
Cloud Security, OpenStack.

I. INTRODUCTION

The multi-tenancy nature of clouds has proved to be a
double-edged sword, since it leads to the main advantage of
resource optimization while at the same time causes many
inherent security concerns [19]. On the other hand, the self-
service nature coupled with the sheer size of the cloud renders
it a challenging task to enforce tenants’ security policies at
runtime. In fact, verifying every user event at runtime can cause
considerable delays (e.g., over four minutes [3]) even in a mid-
sized cloud.

To that end, a promising solution for reducing the response
time of security policy enforcement in clouds to a practical
level is the proactive approach (e.g., [3], [10], [11]). Such an
approach prepares for expensive verification tasks in advance,
based on probable temporal relationships between user requests
(e.g., a user is likely to create security groups after creating a
new VM in OpenStack [15]). Our previous works [10], [11])
have demonstrated that the proactive verification approach may
process user requests with only negligible delays.

In this paper, we apply the proactive approach to Open-
Stack [15], which is one of the most popular cloud platforms,
through designing and implementing a middleware, namely
PERMON. The middleware is designed to first intercept user-
issued requests on their path to an intended service. It then
identifies the requested event types based on either a single
or an aggregation of differentiating fields of corresponding
requests. Finally, the middleware processes selected parameters
coupled with the identified event types, and enforces the verifi-
cation results by either granting or rejecting the user requests.
Specifically, our main contributions are as follows.

• We apply our proactive verification approach to OpenStack
as an efficient middleware solution for enforcing security
policies at runtime in clouds.

• We detail the implementation of our approach as a Web
Server Gateway Interface (WSGI) pluggable middleware
for OpenStack.

• We demonstrate the usefulness of our middleware through
describing a use case.

• We address the key challenge of event type identification
and discuss the additional benefit of our solution to log
processing.

The remainder of the paper is organized as follows. Section
II provides background and related work. Section III gives our
middleware design. Section IV provides the implementation
details. Section V describes a use case. Section VI includes
further discussions. Section VII concludes the paper.

II. PRELIMINARIES

In this section, we first provide a quick review of our
proactive verification approach [10], [11]) to facilitate further
discussions, and then review related work.

A. Proactive Security Verification

Our middleware leverages our previous proactive verification
approach, LeaPS [10], [11]. The main idea of LeaPS is to
prepare for expensive verification tasks in advance, before
actual events are received. Such preparation is possible due
to probable temporal relationships between user events, e.g.,
creating a VM and creating security groups for the same
VM, which can be automatically extracted from event logs
using machine learning techniques [11]. The results of such
preparation (i.e., verification results for possible next events)
can then be stored in a table, such that the actual verification
performed after events are received amounts to a simple lookup
inside the table, which takes far less time than the actual
verification does.

To illustrate the idea, Figure 1 compares how user requests
are processed under a traditional intercept-and-check approach
and under our proactive solution, respectively. In the upper
timeline, an intercept-and-check approach intercepts and then
verifies the update port user request against the desired security
property “no bypass” for the anti-spoofing mechanisms in the
cloud, which can be violated by real world vulnerabilities,
e.g., OSSA-2015-018 [13]. A traditional intercept-and-check
approach (e.g., [3]) would take up to several minutes in medium

Fig. 1. Different security verification approaches: intercept-and-check (upper) vs. proactive (lower) [10]

size clouds to determine whether the request should be granted
or denied, which is apparently unacceptable to the user who
has issued the request.

In contrast, as depicted in the lower timeline, the proactive
LeaPS approach works very differently: It proactively conducts
a set of pre-computations distributed among N-steps ahead of
the actual occurrence of the critical operation (Update port).
The pre-computation is based on a dependency model which
captures the probable temporal order between user events. The
dependency model may be manually created based on struc-
tural dependencies inherent to the cloud platform [10], e.g., a
security group can only be created after the VM is created. The
model can also be automatically established through applying
machine learning techniques to extract frequent patterns or
sequences of events from the logs, which may correspond
to not only aforementioned cloud platform-specific structural
dependencies but also other runtime dependencies, e.g., those
due to business rules or user habits [11].

The pre-computations incrementally prepare the needed in-
formation for efficiently verifying the critical operation later on.
Specifically, the verification results of potential future events
are pre-computed and stored in a so-called watchlist, and
consequently the actual verification only takes negligible time
(e.g., six milliseconds [10]) after the actual events are received.
In this paper, we design and implement the middleware, PER-
MON, to leverage LeaPS as its proactive verification engine.
We will detail the challenges faced in designing PERMON to
work with LeaPS and provide solutions in later sections.

B. Related Work
There exist many solutions for enforcing security compliance

in the cloud. For instance, Solonas et al. [20] propose an
approach to detect illegal and undesired activities in the cloud
based only on collected billing data in order to preserve privacy.
In [12], [9], formal audit approaches have been proposed for
security compliance checking in the cloud. Unlike our mid-
dleware, those approaches can detect violations only after the
fact, which may expose the system to unrecoverable damages.
VeriFlow [7] and NetPlumber [6] monitor network events and
check network properties and policies at runtime to capture
bugs before or as soon as they occur. They rely on incremental
calculations to achieve the runtime verification. These works
focus on operational network properties (e.g. black holes and
forwarding loops) in traditional networks, whereas our effort is
oriented toward cloud virtualized infrastructures.

In the context of runtime security monitoring in the cloud,
various mechanisms and concepts for designing security service
level agreement-based cloud monitoring services have been
discussed in [17]. CloudSec [5] and CloudMonatt [25] are
solutions that have been proposed for VMs security monitoring.
In contrast, our work can potentially cover generic security
properties beyond the scope of VMs. In addition, rather than
intercepting security measurements, we intercept actual events
and assess their impact on the cloud system before applying
them. In [16], a host-based secure active monitoring mechanism
has been proposed. Unlike our work which focuses on high
level policies, the main objective of this work is to detect
unwanted low level operations initiated by malicious software.

Retroactive auditing approaches (e.g., [9], [12], [22], [23],
[21], [4] in the cloud is a traditional manner to verify the
compliance of different components of a cloud. In [9], [12],
formal auditing approaches are proposed for retroactive se-
curity compliance checking in the cloud. The intercept-and-
check approach performs major verification tasks while holding
the event instances blocked. Weatherman [3] and OpenStack
Congress [14] offer security verification of virtual infrastructure
using the intercept-and-check approach, and causes significant
delay to a user request. Unlike those works, we provide a
proactive enforcement approach which enables starting the
verification process in advance.

Proactive security analysis in the cloud is comparatively a
new domain with fewer works (e.g., [3], [18], [24], [10], [11]).
Weatherman [3] verifies security policies on a future change
plan in a virtualized infrastructure using the graph-based model
proposed in [2], [1]. Our previous work, PVSC [10], proactively
verifies security compliance by utilizing the static patterns in
dependency models. Both in Weatherman and PVSC, mod-
els are captured manually by expert knowledge. In contrast,
this work is an extension of our previous work LeaPS [11],
which adopts a learning-based approach to automatically derive
the dependency model. Closest to our work, the OpenStack
Security Modules (OSM) [8] is an access control framework
for OpenStack to support different access control modules by
replacing the existing permission checks in OpenStack; the
framework includes a service called patron which intercepts
user requests similarly as our middleware, whereas the policy
enforcement is not proactive like ours.

III. THE DESIGN

In this section, we provide the high level design of PER-
MON, a proactive security policy enforcement middleware
for OpenStack. The main objective of the middleware is to
intercept and verify each user request against given security
policies and properties such that the request is either denied
or allowed to reach the intended service. We will leverage
our proactive verification component LeaPS (see Section II-A),
although PERMON is designed to work with any other solution
which can perform security verification. Figure 2 provides a
high level overview about how PERMON works. The process
consists of four main steps: Users’ requests are passed through
PERMON on their paths to the intended services (step 1).
PERMON intercepts the requests and extracts parameters which
are pre-determined according to the mechanism of the deployed
security solution (the proactive verification component LeaPS
in our case) (step 2). These parameters are verified by the
security solution (LeaPS) (step 3). The verification result on
the legitimacy of the requested action is put into effect by
PERMON (step 4).

Fig. 2. An overview of PERMON

The proactive aspect of PERMON works as follows. The
main objective is to pre-compute the conditions to be verified
at the moment when the so-called critical events (i.e., the events
that may directly cause breaches to given security properties)
are received. The critical events and those events that are likely
to precede the critical events have been pre-defined in the
dependency model in advance. At runtime, once PERMON
intercepts any of those latter events, the verification module will
be triggered to precompute the required conditions determined
by the imposed security property. When the actual critical event
is intercepted by PERMON, those precomputed conditions
are verified through simple table lookups by analyzing the
intercepted attributes, and the legitimacy of the critical event is
decided and enforced by PERMON.

The main challenges of implementing this design of PER-
MON includes intercepting user requests, identifying types of
events, interacting with the verification module, and enforcing
the received verification results, which will be detailed in next
section.

IV. IMPLEMENTATION

In this section, we detail PERMON implementation and its
integration to OpenStack. Figure 3 shows the architecture of
PERMON with examples of inputs to various steps performed

by PERMON. Algorithm IV describes those steps in more
details. In the following, we elaborate on the implementation
and our approach of employing the general mechanism of a
Web Server Gateway Interface (WSGI) for implementing the
middleware functionality.

Algorithm 1 PERMON (APIcalls, mark-rulls, f ield-check-
rules)

1: procedure POLICYENFORCEMENT(APICalls)
2: for each calli ∈ APIcalls do
3: env[] = readingEnviron(calli)
4: eventToWatch = markFinder(env[], mark-rules)
5: if eventToWatch is NULL then
6: response = callNextComponent(calli)
7: else
8: f ields = readFields(env, f ield-check-rules)
9: Decision = LeaPS(f ields, eventToWatch)

10: if Decision is Allow then
11: response = callNextComponent(calli)
12: else
13: response = callFailed("403 Forbidden")
14: return response

A. Implementing PERMON as a WSGI Middleware

Many features of OpenStack have been implemented as plug-
gable middlewares based on the Web Server Gateway Interface
(WSGI) standard. The main advantage to this approach is that
the pluggable nature of deployed middlewares provides devel-
opers with flexibility to extend existing functionality without
undertaking the cost of customizing existing codes. Following
this approach, PERMON is designed as a WSGI interface, and
is injected into Nova (OpenStack compute service) pipeline
alongside other middlewares being stacked up.

Upon receiving clients’ requests, each middleware in the
pipeline takes the request sent from the previous component,
and calls its next adjacent middleware, which means each
middleware acts both as a server and an application. Any
element that can play the role of a WSGI application has a
call method that is passed with two positional arguments when
it is executed by the preceding server; the first is a python
dictionary for environment information, called environ, and the
second is a callback function named start_response, as detailed
below.
• environ is a python dictionary that contains contextual

information of a request. Such information includes: RE-
QUEST_METHOD, PATH_INFO, wsgi.input, etc. Exam-
ples of the REQUEST_METHOD include PUT, GET,
POST, etc. PATH_INFO is the URL path an API request
is sent to, and wsgi.input is a file-like object and contains
data that is sent to the server.

• start_response is a callable itself, and takes two positional
arguments, status and header; status is an integer followed
by a string, and header is a list of tuples that are sent back
to the client sending the request.

Fig. 3. The Architecture of PERMON (the conjunction of METHOD and PATH_INFO is shown as URL PATH; ASG refers to the event type corresponding
to adding a VM to a security group)

Having been inserted into the pipeline, PERMON is invoked
by its preceding element for each request made to Nova,
which is passed with the environ and start_response arguments
corresponding to the request. PERMON here serves the role of a
server for its next element in the pipeline. Inspecting environ,
we can find useful information to process the corresponding
request as we will explain in more details in next section.

B. Event Type Identification

A key challenge in implementing PERMON is to identify the
intended actions in users’ requests intercepted by PERMON.
The event type corresponding to such actions will determine
which actions to be taken while interacting with the proactive
verification module. By analyzing OpenStack API documen-
tation, some API requests can be uniquely identified through
the conjunction of their METHOD and PATH_INFO attributes.
For instance, a given request can be recognized as to delete
an instance if and only if its corresponding METHOD and
PATH_INFO is DELETE and /servers/server_id, respectively.

TABLE I
EXAMPLES OF EVENT TYPES UNIQUELY IDENTIFIED WITH WSGI.INPUT

wsgi.input Content METHOD PATH_INFO Event Name
"{"os-stop": null}" POST /servers/server_id/action Stop VM
"{"os-start": null}" POST /servers/server_id/action Start VM

However, not all API requests can be uniquely identified
through the conjunction of their METHOD and PATH_INFO
attributes. For example, as it is shown in Table I, the issued
requests for starting and stopping a given server both have
the same METHOD and PATH_INFO environmental variables
according to API documentation. Therefore, we need another

differentiating attribute to fingerprint this group of requests.
By studying API documentation, we find that the METHOD
field of all these requests is POST. As the data is sent in
wsgi.input file-like environmental variable for requests with
PUT and POST as their METHOD, we use its content as
the differentiating attribute. For example, the content of the
wsgi.input object for the two requests (for starting and stopping
a given server) is {"os-start": null} and {"os-stop": null},
respectively (Table I), which is intercepted and parsed by
PERMON as the differentiating attribute.

By parsing the body of requests together with the combi-
nation of METHOD and PATH_INFO attributes, PERMON
can map them to the type of event they are issued for. This
is performed through knowing the collection of differentiat-
ing attributes of a given request and a rule mapping these
attributes to a pre-defined type of event. To that end, we
have embedded inside PERMON a set of mapping rules which
associate the name of the differentiating attributes and their
content with the corresponding event types. For example, the
wsgi.input attribute for attaching a VM to security group
SG1 is {"addSecurityGroup": {"name":"SG1"}}. To investigate
whether a received request is issued to add a VM to a security
group, PERMON examines wsgi.input attribute, and verifies its
starting characters.

As mentioned earlier, we leverage our proactive verification
approach, LeaPS, which triggers pre-computation at the occur-
rence of certain events that are determined to be more likely to
be followed by a critical event. Therefore, our mapping rules
for event type identification are designed to map the request
attributes to those two types of events. When the former type
of events are intercepted, PERMON will invoke LeaPS for pre-

computation, and when the latter type of events are intercepted,
PERMON will invoke LeaPS for performing the verification.

C. Interacting with LeaPS and Enforcing the Decisions

Depending on the even types, PERMON will invoke LeaPS
either for pre-computation or for verification. During such
interaction, in addition to the event types, other parameters
of the corresponding event need to be extracted and passed
to LeaPS in order to verify the legitimacy of the request or
to pre-compute conditions. The exact parameters needed are
determined based on the security properties and event types.
For example, verifying requests against a security property
may require the security group name and the VM ID for the
event type add security group. Therefore, we have implemented
inside PERMON the mappings between event types and rules to
extract required parameters from the intercepted environmental
variables of the corresponding request. More specifically, the
extraction rules will determine which attributes to be fed into
LeaPS, and the way they should be pre-processed by PERMON.

Finally, PERMON enforces the verification results of LeaPS
over the legitimacy of intercepted requests. If LeaPS allows the
event, PERMON calls the next component in the pipeline and
passes to it the intercepted arguments for further processing.
If LeaPS indicates denial of the request, PERMON blocks the
request by controlling the start_response function as follows.
One of the positional arguments, status, is fed into the callback
function start_response. The value of this status argument of
a request that has passed successfully through the previous
component in the pipeline will start with a special value 2xx.
By changing this argument value to 403 Forbidden, PERMON
essentially blocks the request and an error message will be sent
back to the user.

V. USE CASE

In this section, we demonstrate the usefulness of PERMON
through an example use case. We assume users’ requests are
made from OpenStack console. The following illustrates the
functionalities of PERMON, which is to intercept the requests
and their parameters, to interact with the verification module
LeaPS, and to allow or block the corresponding requests
according to the verification result.

The security property to be enforced in the use case is no
downgrade of security group for a running VM, which prevents
attackers from changing the security group of a VM, e.g.,
from no_connection to essential (the latter is supposedly a less
restricted security group which will allow more connections
to the VM, downgrading its security level). For each security
group, the verification module LeaPS is initialized with security
groups with higher restriction levels. The following is a sample
sequence of operations illustrating how our middleware works
to enforce the security property.

Stage 1: The first considered user-initiated request is creating
a VM, namely leaps_vm.

Stage 2: User requests for attaching the VM to security
group no_connection. Security group no_connection hypothet-
ically implements the most restricted security policy.

The request passes through Nova pipeline and is sent to
OpenStack networking service (Neutron) to be executed. Figure
4 shows the corresponding logged request made to Neutron and
logged port update event for attaching security group, which
means the request has reached Neutron service.

Fig. 4. Neutron service logged actions following receiving the request from
Nova

Figure 5 shows logged response to the underlined API
request, which is associated with attaching to security group
no_connection. The status_code 202 shows the request has been
accepted and successfully processed.

Fig. 5. Logged response with status_code 202, associated with request for
attaching to security group no_connection

Stage 3: The cloud user starts the VM. PERMON intercepts
the request while it is passing through the pipeline and inspects
its body. The request body is the content of wsgi.input of
environ argument that is sent to the server. If PERMON finds
the body is associated with starting a VM through verifying
wsgi.input attribute of a passing request, it extracts the ID of the
VM from another attribute of that request, PATH_INFO. Next,
with the extracted ID, LeaPS queries the Neutron database for
the security groups leaps_vm is attached to. According to these
currently attached security groups, it populates the watchlist
with the allowed security groups for the started VM.

Fig. 6. Intercepted request body for starting VM

Figure 6 illustrates the content of the intercepted parame-
ter, wsgi.input. The format of PATH_INFO and the content
of the request corresponding to different server actions are
interpreted according to the API documentation as follows.
PATH_INFO of a request for starting a VM is in the format
of /servers/server_id/action. The format provided in the API
documentation is used to identify requested actions and to
extract different parameters e.g., server_id. As it is shown in
Figure 7, we keep track of the running VM with an index to
the security groups it can be legitimately attached to.

Fig. 7. LeaPS stores IDs of running VMs along with an index to their allowed
security groups

Stage 4: At this point, the attacker tries to downgrade the
security group of the running VM, leaps_vm, by attaching it
to a less restricted security group, namely essential (figure 8).

The content of the request is inspected by PERMON. Having
found the body corresponding to a security group attachment,
PERMON extracts the security group name and the ID of the
VM, which LeaPS looks for and finds among IDs of running
VMs in its database. This means that leaps_vm can only be
attached to more restricted security groups than what it is
currently attached to, i.e., no_connection. LeaPS goes through
the legitimate security groups indexed by leaps_vm. As security
group essential is not among them, LeaPS decides on denial
of the request.

Fig. 8. Attacker’s attempt made to downgrade the security group of the running
VM

Consequently, PERMON refuses to pass this request to the
next element in the pipeline, and prepares its own response
with status 403 Forbidden to be sent back to the client
component (Figure 5). Figure 9 shows the logged request
body for attaching leaps_vm to security group essential. The
corresponding logged response is shown in Figure 10 with
status_code 403, as opposed to 202 in step 2, when the request
was accepted and successfully processed. The common request
ID between this log entry and the one shown in Figure 9
shows this response corresponds to the request with the content
{"addSecurityGroup": {"name":"essential"}}.

Furthermore, as opposed to step 2, no log corresponding
to attaching security group essential can be found in logs of
Neutron Service, working synchronized with Nova service, in
a time frame close to the same time when the request has been

Fig. 9. The logged intercepted body of the API request for attaching to security
group essential

Fig. 10. logged response with status_code 403, associated with request for
attaching to security group essential

made to Nova, which shows the request has been blocked by
our middleware.

VI. DISCUSSIONS

Benefit to Log Analysis In addition to security policy-
enforcement, the PERMON middleware can also benefit log
processing. In general, OpenStack services only log their re-
sponses to the received requests. For log analyses which aim
at identifying the triggering requests, those logged responses
may not provide sufficient information. Specifically, the log
entries can be parsed to extract different fields among which
METHOD and PATH_INFO are supposed to map to different
types of requested events. However, as mentioned earlier, many
events cannot be distinguished from each other. For example,
all requests to invoke a server to take some specific action
will have the same METHOD and PATH_INFO, which renders
log interpretation infeasible. Table II shows three examples of
logged responses to such requests. Except for the VM ID at
the end of PATI_INFO, which is not useful for identifying the
type of requested event, all three log entries have the same
combination of METHOD and PATH_INTO. To this end, our
PERMON middleware logs and examines the intercepted body
of requests in order to identify the type of logged requests. This
provides a feasible solution for more accurate log processing.

TABLE II
EXAMPLES OF INDISTINGUISHABLE LOGGED RESPONSES CORRESPONDING

TO DIFFERENT REQUESTED ACTIONS

OpenStack Log Entry Event Name
"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/f6128951-
0c48-4a11-8b8b-5e96da77b698/"

Stop VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/1223d052-
bc35-485a-9237-1830bca80fd7/"

Start VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/4c886192-
43ad-4f98-90dd-34e24c84fcd0/"

Add Security
Group

Discrepancy between Console and GUI Requests By
studying intercepted attributes, we note that wsgi.input and
METHOD of an issued request can be different depending
on whether the request is made from command-line or inside
the OpenStack dashboard. For instance, Table III shows the
content of two intercepted attributes logged by PERMON when
a request for attaching VM1 to security group SG1 is made
from command-line as opposed to when it is issued from
OpenStack dashboard. The logged attributes are compatible

with what is indicated in the API documentation for attaching
a VM to a security group in the former case; however, they
are mapped to API calls for updating a VM indicated in
the API documentation in the latter case. In this work, we
set our matching rules according to the API documentation
and we expect such discrepancy between internally generated
parameters corresponding to identical requests to be addressed
in future OpenStack releases.

TABLE III
DISCREPANCY BETWEEN REQUESTS MADE FROM OPENSTACK

COMMAND-LINE AND DASHBOARD

METHOD wsgi.input Documented Mapping
Dashaboard PUT {"server": {"name":

"VM1"}}
Update VM

Command-line POST {"addSecurityGroup":
{"name": "SG1"}}

Add security group

VII. CONCLUSION

This paper presented a security policy enforcement middle-
ware, PERMON, which was designed as a pluggable module
in OpenStack Nova service. PERMON provided control over
user-initiated requests according to given security policies
or properties. Working along with our proactive verification
module LeaPS, PERMON could make decisions about either
allowing or denying a request in an efficient manner with only
negligible delay to legitimate users. Furthermore, by inspecting
the request body to identify requests that are otherwise not
distinguishable, PERMON could also bring added value to log
analysis in OpenStack. Our future work will focus on evaluating
the performance of PERMON through experiments. Moreover,
current implementation of PERMON is OpenStack specific,
but we explore the possibility of integrating it to other cloud
platforms.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-
able comments, as well as Yosr Jarraya and Makan Pourzandi
for their contributions to the paper. This work is partially
supported by the Natural Sciences and Engineering Research
Council of Canada and Ericsson Canada under CRD Grant
N01566, Discovery Grant N01035 and Prompt Quebec.

REFERENCES

[1] S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated
information flow analysis of virtualized infrastructures. In European
Symposium on Research in Computer Security (ESORICS). Springer,
2011.

[2] S. Bleikertz, C. Vogel, and T. Groß. Cloud Radar: Near real-time detection
of security failures in dynamic virtualized infrastructures. In Proceedings
of the 30th Annual Computer Security Applications Conference, ACSAC
’14, 2014.

[3] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security
analysis of changes in virtualized infrastructure. In Proceedings of the
31st Annual Computer Security Applications Conference, ACSAC ’15,
2015.

[4] F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and
N. Clarke. Validating cloud infrastructure changes by cloud audits. In
SERVICES’12.

[5] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy. CloudSec:
A security monitoring appliance for virtual machines in the iaas cloud
model. In 5th International Conference on Network and System Security
(NSS), 2011.

[6] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space analysis.
In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13), 2013.

[7] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
verifying network-wide invariants in real time. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’13), 2013.

[8] Y. Luo, W. Luo, T. Puyang, Q. Shen, A. Ruan, and Z. Wu. Openstack
security modules: A least-invasive access control framework for the cloud.
In Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on, pages 51–58. IEEE, 2016.

[9] T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang.
Auditing security compliance of the virtualized infrastructure in the
cloud: Application to OpenStack. In Proceedings of the Sixth ACM on
Conference on Data and Application Security and Privacy (CODASPY),
2016.

[10] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi,
L. Wang, and M. Debbabi. Proactive verification of security compliance
for clouds through pre-computation: Application to openstack. In Euro-
pean Symposium on Research in Computer Security (ESORICS), 2016.

[11] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi,
L. Wang, and M. Debbabi. Leaps: Learning-based proactive security
auditing for clouds. In S. N. Foley, D. Gollmann, and E. Snekkenes,
editors, Computer Security – ESORICS 2017, pages 265–285, Cham,
2017. Springer International Publishing.

[12] S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang,
and M. Debbabi. Security compliance auditing of identity and access
management in the cloud: Application to OpenStack. In IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom), 2015.

[13] OpenStack. Neutron firewall rules bypass through port update, 2015.
Available at: https://security.openstack.org/ossa/OSSA-2015-018.html.

[14] OpenStack. OpenStack Congress, 2015. Available at: https://wiki.
openstack.org/wiki/Congress.

[15] OpenStack. OpenStack open source cloud computing software, 2015.
Available at: http://www.openstack.org.

[16] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture
for secure active monitoring using virtualization. In IEEE Symposium on
Security and Privacy (SP’08), 2008.

[17] D. Petcu and C. Craciun. Towards a security SLA-based cloud monitoring
service. In Proceedings of the 4th International Conference on Cloud
Computing and Services Science, 2014.

[18] M. Qiu, K. Gai, B. Thuraisingham, L. Tao, and H. Zhao. Proactive user-
centric secure data scheme using attribute-based semantic access controls
for mobile clouds in financial industry. Future Generation Computer
Systems, 2016.

[19] K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud.
IEEE Internet Computing, (1):69–73, 2012.

[20] M. Solanas, J. Hernandez-Castro, and D. Dutta. Detecting fraudulent
activity in a cloud using privacy-friendly data aggregates. Technical
report, arXiv preprint, 2014.

[21] K. Ullah, A. Ahmed, and J. Ylitalo. Towards building an automated
security compliance tool for the cloud. In TrustCom’13.

[22] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving
public auditing for secure cloud storage. IEEE transactions on computers,
2013.

[23] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu. Identity-based
data outsourcing with comprehensive auditing in clouds. IEEE TIFS,
2017.

[24] S. S. Yau, A. B. Buduru, and V. Nagaraja. Protecting critical cloud
infrastructures with predictive capability. In IEEE 8th International
Conference on Cloud Computing (CLOUD), 2015.

[25] T. Zhang and R. B. Lee. CloudMonatt: an architecture for security health
monitoring and attestation of virtual machines in cloud computing. In
ACM/IEEE 42nd Annual International Symposium on Computer Archi-
tecture (ISCA), 2015.

