
Modeling NFV Deployment to Identify the
Cross-level Inconsistency Vulnerabilities

L T Sudershan
CIISE

Concordia University
Montreal, QC, Canada

s akshma@encs.concordia.ca

Mengyuan Zhang
Ericsson Security Research

Ericsson Canada
Montreal, QC, Canada

mengyuan.zhang@ericsson.com

Alaa Oqaily
CIISE

Concordia University
Montreal, QC, Canada

a oqaily@encs.concordia.ca

Gagandeep Singh Chawla
CIISE

Concordia University
Montreal, QC, Canada

g chawla@encs.concordia.ca

Lingyu Wang
CIISE

Concordia University
Montreal, QC, Canada

wang@encs.concordia.ca

Makan Pourzandi
Ericsson Security Research

Ericsson Canada
Montreal, QC, Canada

makan.pourzandi@ericsson.com

Mourad Debbabi
CIISE

Concordia University
Montreal, QC, Canada

debbabi@encs.concordia.ca

Abstract—By providing network functions through software
running on standard hardware, Network Functions Virtualization
(NFV) brings many benefits, such as increased agility and flexi-
bility with reduced costs, as well as additional security concerns.
Although existing works have examined various security issues
of NFV, such as vulnerabilities in VNF software and DoS, there
has been little effort on a security issue that is intrinsic to
NFV, i.e., as an NFV environment typically involves multiple
abstraction levels, the inconsistency that may arise between
different levels can potentially be exploited for security attacks. In
this paper, we propose the first NFV deployment model to capture
the deployment aspects of NFV at different abstraction levels,
which is essential for an in-depth study of the inconsistencies
between such levels. Based on the model and an implemented
NFV testbed, we present concrete attack scenarios in which the
inconsistencies are exploited to attack the network functions in
a stealthy manner. Finally, we study the feasibility of detecting
the inconsistencies through verification.

Index Terms—NFV Security, NFV Deployment, Inconsistency,
Verification

I. INTRODUCTION

As one of the main technology pillars of network soft-

warization and 5G, Network Functions Virtualization (NFV) is

seeing rapid adoption especially in the telecommunication in-

dustry [16]. By providing network functions through software

running on standard hardware, NFV enables network service

providers to deploy dynamic, agile and scalable Network

Services (NS). Such benefits come from the fact that an

NFV deployment stack is usually an integration of various

virtualization and SDN technologies together with network

orchestration and automation tools.

Despite such advantages, the increased complexity of an

NFV stack means the attack surface of NFV environments will

be significantly larger than that of traditional networks, leading

to novel security vulnerabilities and threats [13]. Existing

works [11], [19], [32], [38] have addressed various security

threats in NFV (e.g., vulnerabilities in VNFs, vulnerabilities

due to orchestration and management complexities, and vul-

nerabilities resulting from the lack of interoperability) and pro-

posed corresponding solutions (e.g., hypervisor introspection,

secure zoning, and image signing).
However, a security issue that is intrinsic to NFV has

received little attention, i.e., as NFV environments typically

involve several levels of abstraction, the inconsistency between

those levels may arise due to the lack of proper synchro-

nization between management and orchestration components,

which can be exploited by malicious adversaries for security

attacks. Although the inconsistency threats have been investi-

gated in other contexts such as cloud and SDN [21], [37], it has

only received limited attention in NFV [9], [31]–[33] and there

lacks an in-depth study about how such inconsistencies may
be instantiated and exploited based on concrete deployment
of NFV, and how such inconsistencies may be modeled and
identified based on existing data in NFV.

In this paper, we first observe a gap between what is

needed for understanding the inconsistencies (i.e., detailed

information about the NFV deployment) and what is currently

available in the ETSI NFV reference architecture [4]. The

observation leads us to devise a novel NFV deployment model

based on studying existing NFV deployment in open source

platforms. Our deployment model complements the ETSI NFV

architecture with details about all the critical components

of an NFV environment, their relationships, and their levels

of abstraction. Our deployment model enables us to present

concrete attack scenarios in which the inconsistency vulner-

abilities are exploited to attack NFV in a stealthy manner.

We validate our model and attacks through implementation

based on a real NFV testbed. Finally, we present a feasibility

study on the verification solution by gathering information

required for identifying the consistency. In summary, the main

contributions of this work are threefold:

1) To the best of our knowledge, our NFV deployment

model is the first effort to capture how NFV is deployed

167

2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)

2330-2186/19/$31.00 ©2019 IEEE
DOI 10.1109/CloudCom.2019.00034

in the real world based on open source platforms, and we

believe such a model may see many other applications.

2) The attack scenarios demonstrate both the feasibility and

the severeness of inconsistency-based security threats,

which could draw more attention to this issue and provide

insights to its mitigation.

3) Our study about the information required for identifying

inconsistencies serves as a foundation for developing

security verification solutions to detect such threats.

The remainder of the paper is organized as follows. Sec-

tion II reviews the ETSI NFV architecture and provides a mo-

tivating example. Section III introduces our NFV deployment

model. Section IV presents the attack scenarios. Section V

studies the feasibility of consistency verification. Section VI

reviews related work and Section VII concludes the paper.

II. PRELIMINARIES

In this section, we first review the ETSI NFV architecture

and then show what additional information is needed to

understand the inconsistencies through a motivating example.

A. The ETSI NFV Reference Architecture

Figure 1 shows the NFV reference architecture from

ETSI [5] (the callouts are not a part of ETSI NFV architecture

and will be explained in Section II-B). The architecture

includes three main blocks, namely, VNF, NFVI, and MANO.

First, Virtual Network Functions (VNFs) provide a high-level

representation of network functions. Second, NFV Infrastruc-

ture (NFVI) represents the cloud infrastructure that provides

basic compute, network and storage capabilities. Third, NFV

Management and Orchestration (MANO) supports dynami-

cally managing and orchestrating the lifecycle of physical and

virtual resources, which is further divided into three manage-

rial components, Virtual Infrastructure Manager (VIM), Virtual

Network Function Manager (VNFM), and Network Function

Virtualization Orchestrator (NFVO), to complete the entire

deployment process.

Fig. 1: The ETSI NFV reference architecture [5]

B. Motivating Example

To illustrate what might be missing in the ETSI NFV

architecture when it comes to studying the inconsistencies,

Figure 2 shows a simple example of inconsistency. First,

the NS specification (top of the figure) shows that Bob has

specified a virtual firewall (vFw) with two Virtual Deployment

Units (VDUs), i.e., VDU2 with pfSense for routing and

firewalling (the rule shows that any SSH requests should

be rejected), and VDU3 with Snort for IDS. Second, the

corresponding NS instance depicts the changing state of VDU2
before and after an attack is launched by another user, Alice.

By exploiting a VM hopping vulnerability (e.g., CVE-2015-

3456 (Venom), CVE-2015-7835, and CVE-2018-10853), Alice

gains control of VDU2 and modifies its pfSense rule to allow

SSH requests to the Web server. Importantly, such a change

made by Alice on VDU2 will not be reflected at the higher

level (in the VNF Descriptor), which leads to a stealthy attack

caused by the inconsistency between the two levels.

Fig. 2: An inconsistency between the NS specification and instance

To model this attack using the ETSI architecture, we revisit

Figure 1. As the callouts show, the attack involves the follow-

ing NFV deployment details missing in the ETSI architecture.

- The mappings between VDUs and VNFs, NS instance

and VNF, NS instance and NFVI are all absent from

the ETSI architecture, e.g., the mapping between the

virtual firewall descriptor and the two VDUs is essential

to understand the inconsistency in our example.

- The mapping between the management and implemen-

tation layers of clouds [23] is also missing in the ETSI

model, e.g., the mapping between Bob’s VM and VDU2
allows us to link the attack step 1 and step 2.

- Other details like the traffic steering related to the de-

pendencies between the managerial components and the

corresponding virtual resources are also missing.

To complement the ETSI architecture with such missing

details, the next section devises an NFV deployment model.

168

III. THE NFV DEPLOYMENT MODEL

This section proposes a multilevel deployment model for

NFV environments. We first provide an overview and then

detail each level of the model.

A. Overview

Our NFV deployment model is based on the NFV deploy-

ment of several popular open source platforms including Open

Networking Automation Platform (ONAP) [25], Tacker [28],

OpenStack [28], and OpenDaylight [26]. We extract the op-

erational dependencies between managerial components (i.e.,

NFVO, VNFM, VIM, and SDN-C) and functional elements

(e.g., VNF, VM, SFC, and virtual switches). We separate the

NFV stack into four levels as follows. The first level is based

on the common deployment aspects from both ONAP and

Tacker, i.e., NFVO and VNFM collaborate together to process

descriptors and perform high-level management of VNFs and

their connectivity. The second and third levels are based on

NIST’s cloud architecture [23], i.e., the management layer for

cloud management operations and the implementation layer

for underlying implementations.

Figure 3 presents our multilevel NFV deployment model

(middle) with the mapping to the ETSI NFV reference archi-

tecture (left) and our motivating example (right). Specifically,

1) The Service Orchestration (L1) level is the entry point for

NFV users to input their intended design specifications

of network services (NS). The managerial components

at this level are VNFM and NFVO, which control the

onboarding of VNF and NS based on user specifications.

2) The Resource Management (L2) level instantiates the

specifications. The managerial component at this level is

VIM, which receives requests from NFVO and deploys

the corresponding NS instance accordingly.

3) The Virtual Infrastructure (L3) level incorporates the

virtual compute, storage, and network resource pool. The

SDN controller (SDN-C) plays a critical role in managing

network traffic steering at this level.

4) Finally, the Physical Infrastructure (L4) level depicts all

physical resources to complete an end-to-end NFV stack.

Table I lists the main abbreviations we use in this paper.

Acronym Full Name Acronym Full Name
CP Connection Point SFC Service Function Chain

EMS Element Management System SDN-C SDN Controller

FC Flow Classifier VDU Virtual Deployment Unit

MANO Management and Orchestration VIM Virtual Infrastructure Manager

NFP Network Function Path VM Virtual Machine

NFVI NFV Infrastructure VNF Virtual Network Functions

NFVO NFV Orchestrator VNFD VNF Descriptor

NS Network Service VNFFG VNF Forwarding Graph

NSD Network Service Descriptor VNFFGD VNFFG Descriptor

PPG Port Pair Group VNFM VNF Manager

TABLE I: Main acronyms used in this paper

B. L1: Service Orchestration Level

L1 includes the deployment components such as NFVO,

VNFM, NSD, VNF, and EMS. Two key NFV managerial

components at L1 are NFVO and VNFM, which manage NSs

in the form of catalogs such as network service descriptor

(NSD). NSD can include other descriptors, such as VNF

descriptors (VNFD) and VNF forwarding graph descriptors

(VNFFGD). Descriptors provide all necessary network service

specifications and implementation information in structured

templates for orchestration. For example, the traffic steering is

defined in VNFFGD; the incoming network traffic would first

pass flow classifiers (FC) before being forwarded to a specific

network function path (NFP). An NFP connects VNFs with

connection points (CPs) using virtual links.

To deploy an NS instance, an NFV user specifies the

descriptors as inputs for NFVO. After NFVO validates the

technical accuracy of such inputs, NFVO and VNFM inform

VIM to allocate the underlying resources to implement the

NS. NFVO manages the VNFFG (network topology), whereas

VNFM with Element Management System (EMS) performs

high-level management of the individual VNFs based on users’

specifications, e.g., the logical mapping between VDUs and

VNFs. However, the implementation details at lower levels

are not reflected in VNFM. We place VNFs at the same level

of VNFM because of this operational dependency.

Example 1: Tenant Bob wants to deploy an NS with three

VNFs to steer traffic to two destinations. The right side of L1

in Figure 3 shows this NS is deployed using four descriptors.

The NSD for this instance is the composition of VNFFG1D,

vRtrD, vFwD, and vDPID. The lower part of this sub-

figure bridges the descriptors with the implementation. For

example, vFw at this level includes the interpretation of its

corresponding descriptor vFwD and the instance identifiers of

VDU2 and VDU3 from the lower level. This logical mapping

helps to understand the deviation between vFwD and VDU2
should any inconsistencies occur. Logically, NFP1 contains

the sequential order of connection points (e.g., CP:vRtr) to

chain all three VNFs. FC1 classifies all HTTP traffic to NFP1,

while FC2 sends the management traffic through NFP2.

C. L2: Resource Management Level

L2 contains virtual resources such as VDUs, subnets, SFC,

network ports, etc., depicting how the NFV virtual resources

are created and managed inside the cloud environment. VIM is

directly responsible for provisioning, interconnecting and de-

commissioning these virtual resources contained in an NFVI-

PoP domain (an NFVI instance). VDUs at L2 follow a many-

to-one relationship with the VNFs from L1 and a one-to-one

logical mapping with the VMs from the lower level. VNFFGs

from L1 are instantiated as service function chains (SFCs;

also referred to as port chains). SFC is a sequence of port pair

groups, which consist of one or more port pairs.

Once the resource allocation request is received from

NFVO, VIM allocates the compute, storage and network

resources corresponding to the given descriptors. Then, the vir-

tual resources, such as VDUs, subnets, network ports, routers,

service chains, are instantiated to build an NS. Although VIM

can be considered as a part of both L2 and L3, the management

operations are executed by cloud tenants from L2 through

VIM to directly manage the virtual resources. Hence, VIM

is considered as a part of L2 in our model.

169

Fig. 3: The multilevel NFV deployment model

Example 2: Once VIM receives the resource creation request

from NFVO, it creates the deployment units (e.g., VDU1) as

shown on L2. These VDUs are then configured based on NSD.

For example, the mapping of vFw to VDU2 and VDU3 is

configured to allow HTTP traffic and block SSH traffic. After

the creation and configuration of VNFs, the network paths

are created as defined in VNFFGD. These function paths are

implemented as port-chains nfp1-chain and nfp2-chain
with the respective flow-classifier instances fc1 and fc2. By

definition, nfp1-chain is an ordered list of port-pair-groups

(CPs at L1) PPG1, PPG2 and PPG3 corresponding to the

virtual instances VDU1, VDU2 and VDU3, respectively.

D. L3: Virtual Infrastructure Level

L3 includes SDN-C and the virtual networking elements,

such as virtual switches, VLANs, VxLANs, virtual routers,

flow tables, virtual bridges, and the corresponding interfaces.

SDN-C is the management element inside this level (we

follow the most widely adopted use case in the SDN usage

specification [6] to place SDN controller at this level for

providing network connectivity). Flow-tables form the funda-

mental elements for network traffic steering. These flow-tables

are populated with flow-rules, which depict the forwarding

behavior of the SFC. Once the service chains are created,

the corresponding traffic flows for each chain are deployed

in the virtual switches for traffic steering through VMs. The

deployment of traffic flow rules is carried out by the SDN-C;

this is another reason for us to place SDN-C at this level.

Listing 1: Flow-rule that forwards HTTP traffic to vRtr VNF

c o o k i e =0 x794188fe368fe901 ,
d u r a t i o n =1108281.174 s , t a b l e =0 ,
n p a c k e t s =0 , n b y t e s =0 , p r i o r i t y =30 , t cp ,
i n p o r t =” qvo6094f47a−3f ” ,
nw src = 1 9 2 . 1 6 8 . 1 0 0 . 1 1 ,
nw dst = 1 9 2 . 1 6 8 . 1 0 0 . 1 0 0 / 3 2 , a c t i o n s = group : 1

Example 3: Listing 1 shows the flow-rule that classifies and

forwards the HTTP traffic through vRtr to the web server.

table0 acts as an FC for the SFC. Each flow-rule has a match
criteria followed by the action that is to be performed for the

matched traffic. In case of nfp1-chain, simple match crite-

ria is to select all HTTP packets originating from the in port:
qvo6094f47a-3f with the nw src as 192.168.100.11
and the destination as 192.168.100.100/32. Then the

action is to forward the matched packets to vRtr VNF,

which is denoted as group:1 referencing the VNF’s port-

pair-group. The traffic is then forwarded to group:2 (vFw)

and group:3 (vDPI) before it reaches the actual destination.

E. L4: Physical Infrastructure Level

This level includes all the physical entities (e.g., COTS

servers as controller and compute nodes, and physical network

functions (PNFs)) that are involved in the NFV stack. The

actors involved at this level are typically the physical infras-

tructure operators or facility managers who also represent the

managerial components. The model does not include many

details at this level for the sake of clarity.

170

IV. EXPLOITING INCONSISTENCIES IN NFV STACK

In this section, we first discuss inconsistencies in NFV and

explore potential attacks for exploiting the inconsistencies at

different levels. We then implement a testbed and two concrete

attack scenarios to validate our model.

A. Inconsistencies and Attacks

The inconsistency between the NS specification and in-

stance as discussed in our motivating example (Section II-B) is

only a special case. Despite the fact that NFVO is considered

as the “brain” of an NFV environment, the other managerial

components can operate at each level autonomously, which is

referred to as the “split-brain” issue in the literature [7]. For

example, VIM and SDN-C can manipulate virtual resources

and virtual network freely without going through NFVO. Such

autonomous management is intentional in order to effectively

manage multiple domains in a single NFV environment (e.g.,

there can be multiple VIMs managing many NFVI Points of

Presence (NFVI-PoP)). However, the lack of synchronization

is not intended [31], and it can lead to inconsistencies when-

ever the states of functional elements managed by two different

managerial components differ from each other.

Therefore, the inconsistency may potentially arise between

any managerial components and their functional elements in-

side an NFV environment. To that end, our multilevel NFV de-

ployment model provides a foundation for analyzing potential

inconsistencies, as it sufficiently captures the relationships be-

tween different levels of components in an NFV environment.

For example, the inconsistencies between the management

level and the implementation level of cloud [21] and SDN [37]

could be mapped to L2 and L3, while the inconsistencies

between user specification and the actual deployment could

be captured by comparing L1 to the lower levels.

Next, we investigate potential attacks exploiting the cross-

level inconsistencies based on our deployment model shown in

Figure 3 and a concrete implementation based on OpenStack

Tacker [28] and OpenDaylight (ODL) [26] (which will be

detailed in Section IV-B). We will focus on possible attacks

originated at L2 and L3, respectively, which could cause

inconsistencies with the user specifications given at L1.

Threat Model. We assume that the adversary can be a mali-

cious cloud tenant, an admin operator, or an external attacker

who controls a virtual machine (e.g., via malware infection)

with system privilege. The adversary is assumed to share part

of the infrastructure (e.g., compute hosts and physical network)

with the victim. We also assume that the cloud infrastructure

can have vulnerabilities that the adversaries may identify and

exploit. We do not assume the adversaries can compromise the

managerial elements, and we do not assume the adversaries

can compromise SDN controllers or switches.

Attacks at L2. The potential attacks originated at this level

could lead to the modification of VDUs, port-chain, security

groups, etc., which could all lead to an inconsistent state of

the NFV system. We discuss several possibilities to achieve

such attacks in the following.

– Through VIM, a malicious cloud admin, a cloud operator

colluding with an external attacker, or a malicious cloud

user exploiting a privilege escalation vulnerability will be

able to modify the functional elements of another user’s

NS. Over time, OpenStack has seen several privilege

escalation and sensitive data exposure vulnerabilities,

such as OSSA-2016-005 and OSSA-2017-004 [29]. By

exploiting such vulnerabilities, an attacker can perform

many unauthorized operations, such as updating a service

chain by including a malicious VNF, for the system to

reach an inconsistent state.

– As illustrated in our motivating example, an attacker can

also take over the control of a VM through exploiting

a hypervisor vulnerability and then modifying either its

configurations or the traffic flow to lead to an inconsistent

state in which the attacker’s actions at L2 are not reflected

at L1 causing a stealthy attack.

Attacks at L3. Existing security threats in SDN, such as

malware infection, topology poisoning [15], control plane

saturation [34], and state manipulation attacks [36], can be

employed to manipulate the traffic flow in L3. We discuss

some possible attacks at this level as follows.
– An attacker can send crafted packets to the SDN con-

troller to externally trigger undesirable events that lead

to inconsistencies. For example, by enabling/disabling the

network interfaces on a host, the attacker can trigger host-

related events such as HOST JOIN, HOST LEAVE, etc.

– An attacker can compromise a virtual switch and program

it to modify traffic flows to cause inconsistencies. For

example, a critical vulnerability (CVE-2018-1078 [27])

in ODL can be exploited to cause uncontrolled commu-

nication between VNFs by programming the switch to

reconnect to the network upon new flow update events.

B. Implementation

To validate our deployment model and demonstrate concrete

attack scenarios, we have implemented a real NFV testbed

with a telemetry NFV network service. We use OpenStack [28]

as the VIM, which is considered as an essential cloud manage-

ment solution by 96% of the CSPs, while more than 60% of

the telecom operators are already using OpenStack for their

NFV deployments [30]. OpenStack Tacker [28], an official

OpenStack project for building a generic NFVM and NFVO

based on ETSI MANO Architectural framework, is integrated

to deploy and operate virtual network services on the VIM.

We adopt the most widely used TOSCA [24] definition

standards for defining network service descriptors. An ODL

SDN controller is implemented to build an OpenFlow-enabled

NFV system. In our implementation, Tacker uses OpenStack

Heat [28] for VNF lifecycle management and user-defined

VNF descriptors are uploaded to the VNFM module of Tacker

through Horizon/CLI. We build our testbed on a SuperServer

6029P-WTR equipped with Intel(R) Xeon(R) Bronze 3104

CPU @ 1.70GHz and 128GB of RAM. Figure 4 illustrates

the detailed implementation and depicts different deployment

stages as described in Section III.

171

Fig. 4: A real-world NFV deployment on our testbed implemented
using OpenStack Tacker and ODL. The circled numbers indicate
deployment stages: 1) Onboadring the NS Descriptors, 2) Deploying
the VNFs, 3) Configuring the VNFs and 4) Instantiating the NS

Attack Scenario 1. Using our testbed, we have implemented

a concrete attack that targets the integrity of a service function

chain (SFC). In Figure 5, Bob is a network service provider

serving enterprise NFV clients who happens to share the

physical infrastructure with a malicious tenant Alice. The

red dashed line shows a compromised service chain instance,

nfp1-chain, which is modified by Alice to include a

malicious VNF. However, as our test has shown, such a

modification at L2 will not be reflected at L1, leading to

an inconsistent state of the NFV stack and a stealthy attack

allowing Alice to inspect or modify traffic passing the chain.

Fig. 5: An implemented attack at L2 causing inconsistency between
the path specification VNFFG1:NFP1 and its instance nfp1-chain

More specifically, Figure 6 shows the attack timeline. The

port-chain instance (nfp1-chain) of NFP1 consists of three

port-pair-groups corresponding to the three VNFs at t−i time.

Alice at tk could perform the aforementioned attack to execute

the neutron port-chain-update command which would update

nfp1-chain by adding the port-pair-group of a malicious

VNF mVDU. Upon the execution of the neutron port-chain-
update command, the flow-rules will be updated in the virtual

switches for vDPI to forward the traffic further to mVDU as

opposed to the path definition in the VNFFGD element of L1.

To this end, the mVDU VNF is added as a hop in Bob’s port-

chain allowing Alice to have unauthorized access to any traffic

flowing through NFP1 without being noticed.

Attack Scenario 2. The second concrete attack targets the

flow-tables at L3 for causing inconsistencies between L3 and

the upper levels. When the network topology gets updated,

the SDN controller will install new flow-rules in the virtual

switches to reflect the changes. To manipulate the flow-tables

at L3, an attacker can trigger a virtual switch reconciliation (a

functionality to ensure that switches properly reflect intended

controller configurations after restarts) by sending crafted

network packets during a network topology update. This would

cause the old flow-rules to be installed instead of the new

flows. Therefore, the traffic will be steered as specified by the

old flow definition contravening the topology update.

Specifically, assuming the end user (NFV Client) updates

NS’s topology by changing its VNFFG1 definition at L1 to add

vDPI to NFP2, which will redirect the management server’s

traffic through vDPI for further analysis. Upon the update,

the corresponding port-chain (nfp2-chain) and flow-rules

Fig. 6: An illustration of the attack timeline when Alice modifies
Bob’s port-chain nfp1-chain by adding a malicious mVDU at L2

172

Fig. 7: An example showing the feasiblity of verifying inconsistencies based on data extracted from different levels

in the virtual switches must be updated at L2 and L3, re-

spectively. Meanwhile, an attacker triggers a SWITCH LEAVE
event by continuously resetting TCP sessions [36] between

compute1_vswitch and the controller. When the switch

reconnects, the old flow-rules are re-installed as a consequence

of the node-reconciliation vulnerability, leading the traffic of

NFP2 to be forwarded to the management server directly

without passing vDPI. However, L1 and L2 are not aware of

this change in the actual traffic flow, leading the NFV system

into an inconsistent state.

In addition to the attacks presented in this section, there

might be many other ways for exploiting the cross-level incon-

sistencies in an NFV stack (e.g., attacking the flow-classifier

component). To address this issue, we provide a feasibility

study on identifying inconsistencies through verification.

V. FEASIBILITY OF CONSISTENCY VERIFICATION

Security verification using formal methods [20], [33], [37]

or graph-based approaches [17] has seen applications in clouds

and SDN, and it can also provide a viable solution for

detecting the aforementioned inconsistencies in NFV. A key

challenge is to understand what data needs to be collected from

which component of an NFV stack in order to identify the

inconsistencies. Based on our multilevel deployment model,

we provide some preliminary results on the data collection to

show the feasibility of verifying the consistency of NFV.

Specifically, Figure 7 shows an excerpt of the data sources

within each level of our deployment model.
– L1: the descriptors at this level represent users’ require-

ments, which provide the baseline for verifying consis-

tency. For example, NSD defines the path specification

nfp1-chain with three VNFs (vRtr, vFw and vDPI)

and the corresponding network path.

– L2: the information related to VNFs and SFCs can be

extracted from VIM through several sources, such as

Heat, Nova, Neutron databases, and the VDUs (e.g., VNF

configurations and logs). The order of VNFs in a chain

is preserved as the order of records in Neutron database,

while the number of VNFs in a chain is corresponding

to the number of records under the same chain id. In our

example, chain id 50adae26 contains four VNFs instead

of three as defined in NSD. The inconsistency created by

mVDU could be detected by comparing those data.

– L3: flow-tables from the virtual switches contain the

information related to the forwarding behavior of NS.

The highlighted flow-rule is the maliciously added flow,

which forwards the traffic to mVDU (group 4 in the rule),

and also shows the inconsistency w.r.t. NSD.
More generally, the user-defined NS specification at L1 and

the NS deployment related-data at L2 and L3 represent the

current system state and will comprise the main inputs to

verification mechanisms for detecting inconsistencies.

VI. RELATED WORK

To the best of our knowledge, this is the first work proposing

a concrete model for the deployment aspects of NFV. A few

other models of NFV architecture are proposed for different

use cases, e.g., mobile edge computing in 5G [8] and efficient

VNF placement [22]. Pattaranantakul et al. [31] propose a

framework to dynamically manage security functions in NFV.

Hoang et al. [14] propose an extended NFV architecture that

uses Tacker to support containers.

Unlike our work, which focuses on the inconsistencies, most

existing studies on NFV security [11], [19], [32], [38] focus

on issues related to virtualization. Lal et al. [19] propose to

adapt several well-known best practices like VM separation,

hypervisor introspection, and remote attestation. Pattaranan-

takul et al. [32] adopt best practices like access control to

address virtualization-related threats in NFV.

Most of the existing verification solutions in NFV focus

on service function chaining (SFC) [10], [12], [35], [39].

Fayazbakhsh et al. [10] discuss the need for verifying the NS

173

properties related to functionality, performance and account-

ing. Zhang et al. [39] propose a scheme called vSFC to verify

a range of SFC violations. Unlike our work, these solutions

do not consider the consistency w.r.t. given specifications. The

verification approach proposed by Shin et al. [33] can verify

inconsistency as one of the security properties, although the

model of dependencies between service components is rather

simplistic and lacks most of the essential details in our model.

Other works (e.g., [1]–[3], [18]) focus on detecting and

mitigating security threats in NFV. Basile et al. [1] propose

to add a new policy manager component to enforce security

policies during deployment and configuration of security func-

tions. Blaise et. al [2] propose an anomaly detection solution

based on Markov chain property to ensure the correctness

of VNF placement in a chain. Coughlin et al. [3] integrate

trusted computing based solution Intel SGX to enforce privacy

with secure packet processing. Our deployment model could

potentially be used to study the integration of such solutions.

VII. CONCLUSION

In this work, we presented a multilevel NFV deployment

model, which complements the ETSI architecture with es-

sential details for exploring potential inconsistency vulner-

abilities in NFV. Our model showed that the autonomous

management components at different levels render cross-level

inconsistencies an intrinsic threat to NFV. We validated our

model by implementing an NFV testbed and concrete attack

scenarios. Finally, our study on the data collection paved the

way for developing verification-based detection solution. As

future work, in addition to formalizing the proposed NFV

deployment model, we will extend our network-centric model

to include other computing or storage managerial components.

Furthermore, we intend to develop security verification tools

based on open source NFV environments.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-

able comments. This work is partially supported by the Natural

Sciences and Engineering Research Council of Canada and Er-

icsson Canada under the NSERC/Ericsson Industrial Research

Chair (IRC) in SDN/NFV Security.

REFERENCES

[1] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini. A
novel approach for integrating security policy enforcement with dynamic
network virtualization. In NetSoft’15, pages 1–5, 2015.

[2] A. Blaise, S. Wong, and A. H. Aghvami. Virtual network function
service chaining anomaly detection. In ICT’18, pages 411–415, 2018.

[3] M. Coughlin, E. Keller, and E. Wustrow. Trusted click: Overcoming
security issues of NFV in the cloud. In SDN-NFV@CODASPY’17, pages
31–36, 2017.

[4] ETSI. ETSI. Available at: https://www.etsi.org/.
[5] ETSI. Network functions virtualisation architectural framework, 2013.
[6] ETSI. Network functions virtualisation - Report on SDN usage in NFV

architectural framework, 2015.
[7] ETSI. Network function virtualisation (NFV); Reliability; Report on the

resilience of NFV-MANO critical capabilities, 2017.
[8] ETSI. MEC in 5G networks, 2018.
[9] ETSI. Network functions virtualisation (NFV) release 3; Management

and orchestration; Architecture enhancement for security management
specification, 2018.

[10] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar. Verifiable network
function outsourcing: Requirements, challenges, and roadmap. In Work-
shop on Hot topics in middleboxes and network function virtualization
(HotMiddlebox’13), pages 25–30, 2013.

[11] M. D. Firoozjaei, J. P. Jeong, H. Ko, and H. Kim. Security challenges
with network functions virtualization. Future Generation Computer
Systems, 67:315–324, 2017.

[12] M. Flittner, J. M. Scheuermann, and R. Bauer. Chainguard: Controller-
independent verification of service function chaining in cloud comput-
ing. In NFV-SDN’17, pages 1–7, 2017.

[13] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, 2015.

[14] C.-P. Hoang, N.-T. Dinh, and Y. Kim. An extended virtual network
functions manager architecture to support container. In ICISS’18, pages
173–176, 2018.

[15] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility
in software-defined networks: New attacks and countermeasures. In
NDSS’15, pages 8–11, 2015.

[16] Intel. Realising the benefits of network functions virtualisation in
telecoms networks, 2014.

[17] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In NSDI’13, pages 15–
27, 2013.

[18] S. Lal, A. Kalliola, I. Oliver, K. Ahola, and T. Taleb. Securing VNF
communication in NFVI. In CSCN’17, pages 187–192, 2017.

[19] S. Lal, T. Taleb, and A. Dutta. NFV: Security threats and best practices.
IEEE Communications Magazine, 55(8):211–217, 2017.

[20] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In NSDI’15, pages 499–512,
2015.

[21] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang,
M. Pourzandi, L. Wang, and M. Debbabi. ISOTOP: Auditing virtual
networks isolation across cloud layers in openstack. ACM TOPS,
22(1):1:1–1:35, 2018.

[22] H. Moens and F. De Turck. VNF-P: A model for efficient placement of
virtualized network functions. In CNSM’14, pages 418–423, 2014.

[23] NIST. The NIST definition of cloud computing, 2011.
[24] Oasis. Topology and Orchestration Specification for Cloud Applications

(TOSCA), 2013.
[25] ONAP. Open Network Automation Platform. Available at: https://www.

onap.org/.
[26] OpenDaylight. OpenDaylight Project. Available at: https://www.

opendaylight.org/.
[27] OpenDaylight. CVE-2018-1078: OpenDaylight - Insecure behavior in

node reconciliation process, 2018.
[28] OpenStack. OpenStack. Available at: https://www.openstack.org/.
[29] OpenStack. Openstack security advisories. Available at: https://security.

openstack.org/ossalist.html.
[30] OpenStack. Heavy reading study on CSPs and OpenStack, 2016.
[31] M. Pattaranantakul, R. He, A. Meddahi, and Z. Zhang. SecMANO: To-

wards network functions virtualization NFV based security management
and orchestration. In IEEE Trustcom/BigDataSE/ISPA, pages 598–605,
2016.

[32] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi.
NFV security survey: From use case driven threat analysis to State-of-
the-art countermeasures. IEEE Communications Surveys & Tutorials,
20(4):3330–3368, 2018.

[33] M.-K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J.-Y. Choi.
Verification for NFV-enabled network services. In ICTC’15, pages 810–
815, 2015.

[34] S. W. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study. In HotSDN’13, pages 165–166, 2013.

[35] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang.
SFC-Checker: Checking the correct forwarding behavior of service
function chaining. In NFV-SDN’16, pages 134–140, 2016.

[36] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu. Attacking the brain:
Races in the SDN control plane. In USENIX Security’17.

[37] Y. Xu, Y. Liu, R. Singh, and S. Tao. Identifying SDN state inconsistency
in OpenStack. In SOSR’15, page 11, 2015.

[38] W. Yang and C. Fung. A survey on security in network functions
virtualization. In NetSoft’16, pages 15–19, 2016.

[39] X. Zhang, Q. Li, J. Wu, and J. Yang. Generic and agile service function
chain verification on cloud. In IWQoS’17, pages 1–10, 2017.

174

