
CONnecting The EXtra doTS (CONTEXTS):
Correlating External Information about Point of Interest for Attack Investigation

Sareh Mohammadi*�, Hugo Kermabon-Bobinnec*, Azadeh Tabiban†, Lingyu Wang*�,
Tomás Navarro Múnera*, Yosr Jarraya‡

*CIISE, Concordia University, Montreal, Canada, {sareh.mohammadi, hugo.kermabonbobinnec,
lingyu.wang, tomas.navarromunera}@concordia.ca

†University of Manitoba, Winnipeg, Canada, azadeh.tabiban@umanitoba.ca
‡Ericsson Security Research, Montreal, Canada, yosr.jarraya@ericsson.com

Abstract—Provenance analysis is one of the go-to solutions
today for human analysts to investigate security incidents. To
assist analysts in managing the sheer size of provenance graphs,
many pruning solutions have been proposed. Such solutions
rely on graph-theory features, anomaly detection, and other
techniques to identify nodes and edges that are irrelevant to the
detected incident. Despite differences in their methodologies,
those solutions typically share a common approach when it
comes to the detected incident, i.e., they merely regard the in-
cident as an abstract starting point, without tapping into it fur-
ther. However, we observe that this may lead to missed oppor-
tunities for pruning, since the incident is typically associated
with external information, e.g., knowledge about the exploit or
the vulnerability, which may provide extra contextual insights
for effective pruning. Based on such an observation, we propose
CONTEXTS, a solution that complements existing pruning ap-
proaches by leveraging external information about the incident.
Specifically, the solution extracts contextual information from
external sources, maps such information to provenance graph
nodes, and then correlates those nodes to form a subgraph
relevant to the incident. Our implementation and experiments
based on real-world attacks demonstrate its effectiveness, e.g.,
working as the pre-processor of an existing pruning approach,
it helps to reduce the false positives from more than 150k to
less than ten, and as a standalone pruning solution, CONTEXTS
achieves 100% TPR for 19 out of 20 attacks, with an FPR
below 0.6% for 16 out of 20 attacks. Finally, its real-world
practicality is illustrated through a user study where 94.4% of
participants agreed with its usefulness in attack investigation.

1. Introduction

Investigating a detected security incident to identify
the attacker’s activities is usually a prerequisite for
understanding the root cause and consequently deploying
mitigation solutions. To this end, system auditing tools
(e.g., [1], [2]) provide necessary inputs such as system logs,
although those tools typically lack an explicit representation
of the dependency between logged activities [3]. To address

� Corresponding authors.

this, provenance analysis provides an established solution
for identifying the causal relationships between logged
activities in the form of a graph, namely, provenance graph
(PG). PGs have seen various applications in security, such
as attack detection [4], [5], [6], threat hunting [7], [8], and
forensic analysis [9], [10], [11], [12], [13]. In particular,
to assist analysts in attack investigation, the fine-grained
node/edge-level anomaly detection approaches [14], [15]
reconstruct APTs by connecting the identified anomalous
nodes or edges, while the threat hunting approaches [8],
[16], [17], [18] search PGs for predefined sequences
of signatures (a.k.a. Indication of Compromise). Other
approaches focus on in-depth analysis of individual alerts to
identify the underlying vulnerabilities [9], [10], [11], [19],
[20]. These latter approaches typically consider the alert
as a Point of Interest (POI) to extract a dependency graph
from the PG, either by identifying paths leading to the POI
(e.g., [10], [19], [20], [21]) or through backward/forward
searches from the POI (e.g., [3], [9], [12], [22], [23]).

A key challenge here is that the extracted dependency
graph is usually still too large for human analysts to under-
stand. Therefore, a crucial next step is to prune the depen-
dency graph, e.g., based on anomaly scores [9], [10], [12],
[13], data flows [9], [12], [19], [23], node degrees [9], [10],
[12], merging parallel edges [10], [19], [20], [22], and aggre-
gating nodes [20], [24]. However, existing studies indicate
that those pruning solutions may face various challenges in
practice: (i) A backward search may cause dependency ex-
plosion [22], [25], whereas limiting paths to specific lengths
may lead to missing activities in the dependency graph [10],
[21]. (ii) The accuracy of anomaly scores inherently relies on
the completeness of benign activities used for training [9],
[20]. (iii) Graph-theory features may not capture the se-
mantics of attacks [19], [20]. (iv) Many approaches require
numerous traversals of large dependency graphs, which may
become computationally expensive for large PGs [25].

Our key observation is that, despite the differences in
their methodologies, existing pruning methods mostly adopt
a similar approach when it comes to the POI, i.e., regarding
the POI as an abstract node(s) in the PG. However, this
may lead to missed opportunities for pruning since it ignores
the fact that, external to the provenance graph, the incident

alert behind the POI is typically associated with external
information from various sources, e.g., knowledge about
the attack captured in the detection rule that generates the
alert, or knowledge about the exploited vulnerability. Such
information can usually provide extra contextual insights
to enable additional pruning, as demonstrated in our work.

Based on this observation, we propose CONTEXTS, a
solution that can enhance existing provenance-based attack
investigation approaches through providing additional
pruning capabilities. Our key idea is threefold. First, in
addition to regarding the POI as a starting point, we tap
into it further by collecting external information from
various sources about the incident alert behind the POI.
Second, the collected information is then mapped to the PG
to establish additional points of interest, namely, waypoints.
Third, as the original POI and the waypoints represent
different perspectives of the same attack (e.g., knowledge
about the exploit versus knowledge about the vulnerability),
correlating them in the PG may achieve a “triangulation”
effect to effectively narrow down the scope of investigation
to a smaller subgraph containing relevant nodes and edges.

More specifically, CONTEXTS first builds a knowledge
base offline to store external information related to
known alerts. Second, upon receiving an incident alert,
it automatically extracts the related external information
from the knowledge base, and generates queries to label
corresponding PG nodes as the POI and waypoints.
Third, to correlate those labeled nodes, it leverages both
graph-theoretic techniques such as path finding and vicinity
expansion, and semantic approaches such as retrieving
process nodes’ ancestor/descendant hierarchy, and limiting
the expansion at frequent system activities. We focus
on vulnerabilities affecting the kernel and its associated
utilities in this paper due to their relative importance and
the need highlighted in recent works [26], [27], although the
methodology is applicable to other types of vulnerabilities.
In summary, our main contributions are as follows.
• We address the research gap that external information

about the detected incident is not leveraged in existing prun-
ing approaches. By leveraging such external information in
a systematic way, CONTEXTS can work as both a stand-
alone solution for attack investigation, and a pre-processor
to provide significantly smaller inputs (than original PGs) to
existing pruning solutions for enhancing their effectiveness.
• We provide detailed methodology for CONTEXTS to (i)

build its knowledge base of external information, (ii) map
such information to PG elements, (iii) correlate those PG
elements to form the output subgraph, (iv) apply the output
subgraph for attack investigation, root cause derivation, and
enriching intrusion detection system (IDS) rule-sets.
• We implement and evaluate CONTEXTS based on

real-world security incidents. Our experiments demonstrate
that it can significantly improve the effectiveness of existing
pruning approaches, e.g., reducing the number of false pos-
itives from thousands to less than 50 in all cases. Addition-
ally, as a standalone pruning solution, CONTEXTS achieves
100% TPR for 19 out of 20 attacks, with an FPR below

0.6% for 16 out of 20 attacks. Furthermore, its performance
is robust against noises in the PG, e.g., the number of edges
in the output subgraph remains below 200 as the PG size
increases by thirty times (with more than 180,000 edges).
Finally, our user study shows its real-world practicality,
where the participants reported with an average certainty of
4.85 (out of 5) that CONTEXTS is effective in reducing the
scope of analysis, and 94.4% reported CONTEXTS helped
them to identify the most relevant attack activities.

2. Preliminaries

This section provides an example and our threat model.

2.1. Motivating Example

Figure 1 illustrates the challenges faced by existing
pruning solutions (left) and our key ideas (right).
Attack Description. For simplicity, this example relies
on a simple attack scenario (more complex scenarios are
discussed in Section 4.2.2). This attack scenario assumes
a setuid bit set alert is generated by the exploitation of
CVE-2022-0847 (i.e., Dirty Pipe, a local privilege escalation
vulnerability in the Linux kernel [28], [29]). The vulnera-
bility enables writing to memory pages in the page cache
that are linked to read-only files, which should normally be
immutable. To exploit the vulnerability, the attacker fills a
Linux pipe to set the PIPE_BUF_MERGE flag, then empties
the pipe and replaces it with their intended data. When the
splice system call merges the page caches, the flag causes
the new data to be merged into the original read-only file.
Exploiting this vulnerability, an attacker can replace the con-
tent of a setuid bit-enabled binary (e.g., the passwd util-
ity) with his/her own shellcode to obtain the root access [30].
Challenges Faced by Existing Approaches. Even to
investigate such a simple attack, the analyst may face a
fairly large PG (illustrated on the left side of Figure 1),
since the attack-related activities may be hidden inside
thousands of system calls generated by system auditing
tools such as Sysdig [2] and Strace [1]. Therefore, most
provenance analysis solutions employ one or more pruning
techniques to reduce the scope of analysis, although with
limitations. First, the V-shape gray shade in the figure
illustrates that searching backward from the POI can lead
to a large number of false dependencies [22], as illustrated
by white nodes inside the V-shape. Second, the nodes with
numbers inside illustrate anomaly score-based techniques,
which inherently relies on the completeness of training
data, a condition that is typically difficult to ensure due to
diverse system behaviors [9], [20]. Third, as illustrated by
a white node connected to many edges, the degree of node
and other generic graph-theory features may not capture
the attack semantics, and thus can be inaccurate [19], [20].
Fourth, the dashed line shows that searching for connected
paths of specific lengths can miss an attack-related node
(i.e., the black node above the dashed line) because it
is located beyond the specified path length [9], [12].

1

Challenges Faced by Existing Pruning Approaches Key Ideas behind CONTEXTS

Point of Interest (POI)

Attack-related nodes

setuid

Unrelated nodes

10

1

setuid

CONTEXTS

IDS Rule CVE
Backward search:

Dependency explosion

Graph theory features:

Lacking semantics

Anomaly scores:

Need complete

training data

Limiting path length:

Missing attack nodes

2

3

sh
euid 0

setuid

pipe

xxxx

/tmp/sh exploit

File
SUIDProcess

sh

xxxx

xxxx
xxxx

xxxx xxxx

Rule: setuid or setgid bit set

Condition: evt.type=chmod

Rule Interpretation:

Updated euid to 0

CVE-2022-0847 (Dirty Pipe):

Opens a pipe, fills page caches

to set PIPE_BUF_MERGE flag,

then splice merges the pages.1

Figure 1: An example of attack investigation using existing pruning approaches (left) and CONTEXTS (right).

Finally, although not shown in the figure, many of those
approaches may require numerous graph traversals (e.g.,
for calculating the occurrence probability of all events
or assigning weights to all nodes and edges), which may
become computationally expensive for large PGs [25].

Key Ideas Behind CONTEXTS. Instead of directly address-
ing the aforementioned challenges, CONTEXTS leverages
external information about the POI to prune the PG in a way
that is complementary to most existing approaches (as they
do not employ such information). As a result, the output of
CONTEXTS may serve as an (significantly smaller) input to
existing approaches to indirectly improve their effectiveness,
as demonstrated in our experimental results in Section 4.
Specifically, the right side of Figure 1 illustrates the main
ideas behind CONTEXTS. First, externally to the PG, we
identify additional contextual information (highlighted in
green) through analyzing the IDS detection rule used to
generate the incident alert (e.g., the event type is chmod
and euid is updated to 0, i.e., root), the CVE description of
the corresponding vulnerability (e.g., the use of splice and
pipe system calls), and potentially other data sources (1).
Second, we map such external information to PG node or
edge properties, and automatically generate queries to label
the corresponding PG elements as waypoints, as illustrated
by the nodes with green borders in the figure (2). Third,
we correlate those two waypoints together with the POI to
form a subgraph, illustrated by the triangular shape formed
by the three double arrows (3). The subgraph is relatively
small, and yet covers all the attack-related activities, i.e., (i)
the attacker takes advantage of the Dirty Pipe vulnerability
to overwrite part of the SUID binary with a crafted payload;
(ii) upon successful hijacking, s/he executes the hijacked
binary, which in turn drops another executable binary
(/tmp/sh), writes to it, and changes its permission; (iii) the
second binary (/tmp/sh) executes a shell code containing
setuid(0), setgid(0) to provide a root shell.

2.2. Threat Model

Following existing provenance-based solutions [10],
[21], the underlying operating system, auditing framework,
IDS, and provenance graph generator are assumed to be
parts of the trusted computing base (TCB). Therefore,
attacks that may compromise the auditing, detection, log col-
lection, and provenance generation or analysis subsystems
are beyond the scope of this work. Undetected 0-day attacks
are out of the scope, unless there is a POI to start with (e.g.,
they are followed by other attack steps that are detectable
using IDS, or they are detected by node/edge-level anomaly
detection approaches [14], [15]). In the latter case, the
dynamic waypoint approach of CONTEXTS can be applied,
as detailed in Section 3.3. Attacks not involving system calls
at all, e.g., stack-based buffer overflow and race condition
in user space, are also out of scope. Finally, we assume the
external information obtained from public sources such as
IDS rule-sets and CVE databases is accurate and up-to-date.

3. Methodology and Implementation

This section first provides an overview of CONTEXTS
and then details each of its four stages.

Overview. As shown in Figure 2, CONTEXTS consists of
four main stages as follows. First, it extracts contextual
information from data sources such as IDS rule-sets and
CVE databases, and stores such information inside a
repository. Second, upon receiving an alert, it retrieves
contextual information related to the alert from the
repository, and generates queries to identify and label
relevant PG nodes and edges as waypoints (WPs). Third, it
correlates the WPs and POI to obtain a subgraph containing
nodes and edges relevant to the alert. Finally, it utilizes the
subgraph to assist the analyst in investigating the attack,
deriving its root cause, or enriching the IDS rule-set.

Incident Alert

PG Generator

Alert Context Extraction

Alert Context

Mapping Alert Context to PG

POI

WP

IP

IDS

Root Cause

Derivation

Outcome

Utilization

Attack

Investigation

evt.type=setuid

IDS-related

Vulnerability-related

Alert Context KB

IP Queries

POI Queries

WP Queries

Query

Generation

Q1 (username=user1)

Q2 (time=6:38:24)

Q3 (proc.name=SUID)

Q4 (filename=/tmp/sh)

Q5 (evt.type=setuid)

Q6 (pipe, splice)

Searching for PG

Elements

IDS Rule-set

Enrichment
Rule: …
 condition:
 proc.name= …

System-level

Security

Enforcement

Tools

Cybersecurity

KB

CVE

CWE

CAPEC

Query Execution

WP

Initially Pruned Graph

K-shortest

Paths

Path-guided

Vicinity

Conditional

Expansions

Static &

Dynamic

WPsHigh

Priority

Low

Priority

V
icin

ity
 E

x
p

an
sio

n
D

y
n

am
ic W

P
s

B
o
u

n
d

ary
 N

o
d

es

Correlation Discovery

CVE-2022–0847:

pipe, splice

Alert Context Categories

IP: Initial Pruning

POI: Point-of-Interest

WP: Informative Way-Point

Setuid bit set

IDS

WP

WP
WP

POI

username=user1

time=6:38:24

proc.name=SUID

filename=/tmp/sh

High Priority

Low Priority

Irrelevant to Alert

WP Pruning

WP

Figure 2: Overview of CONTEXTS.

3.1. Alert Context Extraction

This section details how CONTEXTS collects external
information related to alerts, namely, alert context.
Alert Context Knowledge Base. CONTEXTS extracts alert
contexts from various data sources and stores such informa-
tion in a local repository, namely, alert context knowledge
base (ACKB). Depending on the data sources, alert contexts
can be divided into two broad categories: (i) IDS-related
alert contexts include information that is explicitly repre-
sented in the alert (e.g., the detection time), and information
that is not part of the alert itself, but can be derived from
conditions or keywords used by a rule-based IDS (e.g., [31],
[32]) to generate the alert, such as evt.type=chmod.
(ii) Vulnerability-related alert contexts include information
about the vulnerabilities, weaknesses, or exploit patterns
related to the alert, and can be obtained from public
repositories (e.g., CVE [33], CWE [34], and CAPEC [35]).

To extract such alert contexts from the corresponding
data sources, CONTEXTS searches their provided data for
information that matches what is captured inside a system-
level PG (which is our focus in this paper), e.g., filenames,
libraries, and system calls. To achieve this, our methodology
is twofold. First, we build a lexicon of Linux kernel-related
concepts to be utilized by CONTEXTS as a reference to
perform searches on data from various sources. The search
results provide alert contexts that can later be mapped to
PG elements (detailed in Section 3.2). Additionally, for
vulnerability-related alert contexts, CONTEXTS searches for
CVEs with similar impacts on the system (e.g., privilege
escalation) as indicated in each alert, and regards such
CVEs as potential causes of that alert. Once the alert context
extracted from a CVE is successfully mapped to the PG, that
CVE enables CONTEXTS to further link the alert to other
data sources, such as CWEs and CAPECs, by following their
references to the same CVE, as outlined in the Cybersecurity
Knowledge Graph (CSKG) [36], [37], [38]. This allows
CONTEXTS to obtain more alert contexts (and waypoints).

Example 1. Figure 3 shows the simplified alert context
related to the setuid bit set alert. The IDS-related alert

Alerts

ID Alert

setuid bit set

… …

Alerts Fields

Name Tag

user.name IP 001

time IP 001

filename POI 001

proc.name POI 001

… … …

Key Feature

evt.type=chmod 001

setuid 001

… …

CVE Details

CVE ID

pipe,splice

mount,overlay

… …

2023-0386

Alert

ID

Key Features

2022-0847

001

Impacts

Privilege Escalation

…

Alert

ID

Alert Signature Features

CWE-CAPEC

Key Features

665 29

… …

CWE CAPEC

t1: (Process)-[Access]-(Resource)

t2: (Adversary)-[Modify] -(Resource)

t3: (Process)-[use]-(Resource)

t1 < t2 < t3

CVE

CWE

CAPEC

IDS

Figure 3: Example alert contexts for a “setuid bit set”
alert.

context is shown at the top. The Alert Fields and Alert Signa-
ture Features tables list information extracted from the alert
itself, and from the detection rule features, respectively. Ad-
ditionally, as the Impacts table (middle left) shows, the alert
indicates a privilege escalation that links the alert to CVEs
with similar impacts (e.g., CVE-2022-0847 and CVE-2023-
0386). Correspondingly, the CVE Details table shows the
vulnerability-related alert context, where the Key Features
column shows information that can later be mapped to the
PG. In particular, CVE-2022-0847 involves the combination
of pipe and splice system calls, and CVE-2023-0386 relates
to the OverlayFS subsystem. Furthermore, CVE-2022-0847
is linked to the Improper Initialization weakness (CWE-
665) [29], which arises due to a Race Condition (CAPEC-
29) [39]. Those can provide additional alert contexts (and
waypoints).

Alert Context Categorization. CONTEXTS classifies
the alert context information into three categories, each
representing a different purpose in the later stages of
the methodology. First, Initial Pruning (IP) alert contexts
provide an overview about the alert incident, such as
username and time, which can be applied for an initial pass
of PG pruning (e.g., using a time-based pruning method [9],
[12], [40]). Second, Point-Of-Interest (POI) alert contexts
offer detailed information about the detected incident, such
as the process name or the name of the affected file, which

will be used to prune potential waypoints (Section 3.2) and
correlate with waypoints (Section 3.3). Third, Waypoint
(WP) alert contexts provide additional information about
the detection or cause of the alert, such as features of the
alert signature and CVE, which will be used to correlate
with the POI (Section 3.3). For instance, in Figure 3, the
IP and POI categories are indicated in the Tag column
of the Alerts Fields table, and the data in the other tables
generally belong to the WP category.
Implementation. We implement the alert context
knowledge base using PostgreSQL [41] for its advanced
features like full-text search. We deploy Falco [42], a
popular, open-source, rule-based IDS for detection. We
build a lexicon of Linux kernel-related concepts from the
man-pages project, by processing each page and identifying
associated filenames, processes, and system calls using
regular expressions. To link alerts to CVEs, we process all
Linux kernel vulnerability descriptions obtained from the
National Vulnerability Database (NVD) [43], and extract
the impact of each CVE. This is achieved either based
on the cited CWE and CAPEC entries when available,
or through matching the keywords using lemmatization
with the Spacy Python library [44], e.g., both “escalate
their privileges”, “escalation of privileges” will match with
“privilege escalation” (a similar lemmatization technique is
also applied to the descriptions of the alerts).

3.2. Mapping Alert Context to PG

This section details how CONTEXTS maps alert con-
texts to a PG through generating graph queries and labeling
PG elements based on their relevance to the incident.
Query Generation. To map alert contexts to a PG, CON-
TEXTS automatically generates graph queries to identify
the corresponding PG nodes and edges. This is achieved in
two steps. First, it searches the properties of all the nodes
and edges to identify those that store the alert context infor-
mation. This is necessary considering the fact that different
provenance construction tools (e.g., [45], [46], [47]) may
adopt different names in the node and edge properties for
the same concept. For instance, SPADE [47] records the file
name in path property of nodes and PROVDETECTOR [21]
records it in file path property. Second, CONTEXTS
formulates a condition for each node/edge property
identified in the previous step, and constructs a query based
on the type of that property. For instance, it generates a node
query MATCH (node) WHERE C for each condition C
that is mapped to a node property. Conversely, it generates
an edge query MATCH (Node1)-[Edge]-(Node2)
WHERE C for each C mapped to an edge property.

Example 2. Figure 4 (top left) shows the table created
by mapping the filename and evt.type alert context infor-
mation to PG elements. Specifically, CONTEXTS searches
the PG based on the key-value pair (filename, /tmp/sh)
to find the value of filename (i.e., /tmp/sh) stored in the
property path of the nodes representing system files (i.e.,
Node.subtype = file). Similarly, (evt.type, chmod) is found in

an edge property Edge.operation. Based on those mappings,
Figure 4 (bottom left) shows how CONTEXTS generates a
node query and an edge query, respectively.

Query Execution. CONTEXTS prioritizes the execution of
generated queries by dividing them into three categories
based on the corresponding types of alert contexts
(Section 3.1), i.e., Initial Pruning (IP) queries, Point-Of-
Interest (POI) queries, and Waypoint (WP) queries. First,
IP queries are given the highest priority for execution. By
labeling the intersection of the results of those IP queries,
CONTEXTS can identify a smaller subgraph G′ of the
original PG to make the execution of subsequent queries
more efficient. Second, POI queries are executed next to
identify and label nodes within G′ as the POI. Third, WP
queries are executed at last on the original PG instead of G′,
since their results are not necessarily limited to be within G′.

Example 3. Following Example 2, the middle of Figure 4
illustrates the query execution. First, executing the two IP
queries Q1 and Q2 labels G′ within the PG (nodes high-
lighted in black) based on the username specified in the alert
(username=user1), and the time of the alert (time=6:38:24),
respectively. Second, executing the two POI queries Q3 and
Q4 labels the POI within G′ as nodes satisfying the prop-
erties filename=/tmp/sh and proc.name=SUID, respectively.
Finally, executing the WP queries (i.e., Q5 – Q8) labels two
groups of nodes as waypoints WP1 and WP2 (to be detailed
in the next example).

Waypoint Pruning. Since alert contexts are extracted from
external data sources, the corresponding waypoints may not
always be relevant to the investigated alert, e.g., WP queries
may return multiple CVEs with similar impacts as the alert.
Therefore, in waypoint pruning, CONTEXTS examines the
nodes returned by WP queries, and prune those that are not
connected to the POI. More formally, the ith waypoint can
be denoted as {n | n ∈ Nodes(G), n ∈ Result(WP-Qi), n

path↔
POI}. Moreover, waypoints that fall inside the subgraph
G′ will be given higher priorities in correlation discovery
(Section 3.3), which is helpful in cases where a WP query
returns several disconnected nodes.

Example 4. Following Example 3, the right side of Figure 4
shows a flowchart for waypoint pruning and several example
results of WP queries. First, since the result of Q5 is
part of the POI, it is labeled as such. Second, since the
results of Q6 and Q7 are both connected to the POI and
inside the subgraph G′, those are labeled as WP1 and WP2,
respectively, and will be given priority. Finally, the result of
Q8 is not labeled since it is not connected to the POI.

Implementation. We utilize the Auditd Linux auditing
daemon [48] to collect logs, and the latest version of
SPADE [47] to generate provenance graphs from the logs.
We specify the syscalls=all option in order to include
additional system calls. We store the captured provenance
data in a Neo4j [49] database. We retrieve all properties
of nodes and edges from the SPADE data model [50], and

user.name=user1

time=6:38:24

filename=/tmp/sh

proc.name=SUID

evt.type=chmod

evt.type=setuid

Pipe, Splice

Mount, Overlay

…

Filtering Criteria
Query Generation

ACKB-PG Mappings
1. Searching

the filtering

criterion

A node property

e.g., Filename

An edge property

2. Mapping to

e.g., Event type

MATCH (Node) WHERE

Node.subtype=file AND

Node.path contains /tmp/sh

MATCH (Node1)-[Edge]-(Node2)

WHERE Edge.operation=chmod

Node Query

Query Execution

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

…

Generated

Queries

Labeling

results of

IP Queries

Q1

Labeling

results of

POI Queries

Q5

…

Q8
Edge Query

Q2

Q3

Q4

WP Query Result

Q3 Result

Q4 Result

WP Queries

POI Queries

IP Queries

WP Pruning
Q5~Q8

result

No

e.g., Q6, Q7

Yes

Yes

Yes

No

No

e.g., Q5

e.g., Q8

Q8 Result

Q6 Result

Q7 Result

ACKB Field PG Element

Filename
Node.subtype=file

Node.path contains Filename

Event type Edge.operation

… …

G
ra

p
h

 D
B

 E
n

g
in

e

WP1

POI

WP2

POI

WP1

WP2

Assign the same

label to this result

Connected

to POI?

Assign a

new label

Low priority

Disregard

Inside G´?

Included

in identified

POI/WP?

IP

POI

WP

Figure 4: Example of query generation and execution for a “setuid bit set” alert.

query those properties to identify the mapping from ACKB
to PG for each alert context, with the results stored in
our PostgreSQL database. We use Python for generating
queries in the Cypher [51] query language, and we execute
those queries through the Neo4j Python driver API. For
waypoint pruning, we utilize the apoc.path.expandConfig
procedure [52] from Neo4j’s APOC library.

3.3. Correlation Discovery

This section presents a series of correlation discovery
approaches for linking the POI and WPs to form a subgraph
relevant to the investigated alert. Those approaches are
incremental in the sense that each subsequent approach
incorporates additional features to improve the result.
K-Shortest Paths (KPath). Since the POI and WPs will
mostly be treated equally during the correlation discovery
stage, we will refer to them collectively as informative
points from now on. Given that those informative points
may represent different perspectives of the incident, a
straightforward way to correlate them is by examining
the paths connecting the PG nodes involved in those
informative points. Based on such an intuition, our first
approach, the K-Shortest Paths (KPath), finds the top K
paths with the smallest number of edges between each pair
of informative points. K is a parameter that can be adjusted
to strike a balance between better coverage of relevant
nodes (larger K) and lower computational overhead with
less irrelevant nodes (smaller K). Nonetheless, a key
challenge is that, even with a relatively small K, a standard
K-shortest path algorithm [53] may still lead to many
irrelevant nodes since it ignores the semantics of PGs.

To address this, we propose a semantics-aware K-
shortest path approach as follows: (i) We only discover
the K shortest paths between nodes representing processes
from different informative points, while paths between other
nodes in those informative points (e.g., files) will be kept
implicit. The rationale is that those process nodes typically
represent the activities to which other nodes in the same
informative point are connected. Therefore, a path between
the process nodes may be sufficient to correlate all other
nodes in the informative points. (ii) When an informative
point contains multiple connected process nodes, we only

K-SHORTEST-PATH

WP2

WP1

POI

Process nodes with a

closer creation time

K-shortest paths between process

nodes of informative points

Undirected merged edge

K-SHORTEST-PATH
K-SHORTEST-PATH

Figure 5: Example of the KPath approach.

discover the shortest paths between the pair of process nodes
with the closest creation times. The rationale is similar,
i.e., the shortest paths between two process nodes with the
closest creation times are likely shared by the paths between
other process nodes in the same informative points. More
formally, the shortest paths between two informative points
IP ti and IP tj are obtained based on the process nodes
Pi ∈ IP ti and Pj ∈ IP tj where Pi.time − Pj .time =
min∀P ′

i∈IPti,∀P ′
j∈IPtj (|P ′

i .time − P ′
j .time|). Algorithm 1

(in Appendix A) provides further details of the KPath
approach, and we evaluate its performance in Section 4.4.

Example 5. Figure 5 illustrates how the KPath approach
finds the shortest paths between the three informative points.
By identifying paths between the process nodes, all the other
connected nodes (e.g., File nodes) can also be correlated
without the need for explicitly identifying the paths between
them (which would incur significantly more overhead as
there are totally 32 pairs of nodes).

Path-Guided Vicinity (PthVic). Our second approach, the
path-guided vicinity (PthVic), adds vicinity expansion to the
KPath approach. The intuition is that the PG nodes close
to the informative points and shortest paths are likely also
related to the incident. Therefore, the PthVic approach ex-
pands from the result of KPath in two steps. First, it expands
to the N-hop vicinity of each node inside the informative
points. Specifically, starting from each such node, it tra-
verses connected edges up to N hops, and labels the nodes
and edges included in such a traversal. N is a parameter that
can be adjusted to achieve more coverage of relevant nodes,
without causing dependency explosion [22], which will be
further evaluated in Section 4.4. More formally, the N-hop
vicinity of an informative point IPt can be represented as:

N=2 hops from informative points Further hops (N’=1) from the highlighted nodes

Nodes both in a WP’s vicinity and on a shortest pathShortest paths

Figure 6: Example of the PthVic approach.

N-hop(IPt) =
⋃︁

∀x∈Nodes(IPt)

(︁
Vic(x,N)

)︁
, where

Vic(x,N) =

⎧⎨⎩
x if N = 0

Vic(x,N -1) ∪
{︃
n ∈ Nodes(G), e ∈ Edges(G) |
∃m ∈ Nodes

(︁
Vic(x,N -1)

)︁
, n

e↔ m

}︃
if N > 1

(1)

Second, the PthVic approach also expands along the K
shortest paths. Specifically, starting from each node that is
both (i) inside the N-hop vicinity of an informative point (as
defined above), and (ii) on one of the K shortest paths (iden-
tified by the KPath approach), it expands N ′ further hops,
where N ′ is a parameter satisfying N ′ < N . Algorithm 2
(in Appendix A) outlines the steps of this approach, and we
will evaluate its performance under different combinations
of parameter values through experiments in Section 4.4.

Example 6. The left side of Figure 6 depicts the 2-hop
vicinity of the informative points (N= 2), as well as the
shortest path (K= 1) between them. The right side highlights
the nodes that are both inside the vicinity and on the paths,
and depicts how the 2-hop vicinity is selectively expanded
to 3-hop (N ′= 1) from only those nodes.

Vicinity of Static and Dynamic WPs (StatDyn). The
previous two approaches only leverage WPs derived from
alert contexts (i.e., information extracted from external
sources), which will be referred to as static WPs from now
on. Our next approach, the vicinity of static and dynamic
WPs (StatDyn), additionally captures dynamic WPs, which
correspond to the ancestor and descendant processes of the
process nodes inside the informative points (POI and static
WPs). The intuition is that those ancestor and descendant
processes may be indirectly related to the incident, and cap-
turing their vicinity may identify additional relevant nodes.

This approach has two important implications. First,
those are called dynamic WPs since they may vary
depending on the attackers’ (order of) activities, which
enables CONTEXTS to capture different attack instances
exploiting the same vulnerability. Second, since dynamic
WPs can be obtained using only POI, the StatDyn approach
allows CONTEXTS to be applied to cases where no static
WPs are available (e.g., no alert context is found from
external sources). Algorithm 3 (in Appendix A) details
the steps of this approach, and Section 4.4 examines the
effectiveness of the StatDyn approach in scenarios both
with and without static WPs.

Example 7. Figure 7 (left) shows the process nodes within
the three informative points (red circles) and their ancestor

Pid=12

PPid=10

Process

Pid=25

PPid=20

Pid=15

PPid=12

Pid=20

PPid=15 Pid=24

PPid=23

Process

Pid=28

27

Process

Pid=23

PPid=15

Pid=27

PPid=20

Process nodes in

informative points

POI/ Static WPs

Dynamic WPs (ancestors)

Dynamic WPs (descendants)

Shortest path

Path-guided

vicinity

Vicinity of Static and

Dynamic WPs

Figure 7: Example of the StatDyn approach.

(blue) and descendant (green) processes, where the parent-
child relationships are indicated by the Pid (process ID) and
PPid (Parent Process ID) of process nodes. Figure 7 (right)
depicts the captured vicinity of the static and dynamic WPs.

Conditional Expansion (CondExp). Our final approach,
the conditional expansion (CondExp), incorporates all
the aforementioned features, and additionally mitigates
the potential dependency explosion caused by nodes
representing frequent system activities. Specifically, such
nodes are typically connected to a large number of activities
that may be irrelevant to the investigated incident [24], e.g.,
shared object files used in Unix-like operating systems, or
DLL files in Windows systems. The CondExp approach
identifies such boundary nodes (denoted as BN) as having
a direct edge to at least τ process nodes not inside any
dynamic WPs, where τ is a parameter, as detailed below:

BN =
{︁
n ∈ Nodes(G) | τ ≤ |{proc ∈ P | (n, proc) ∈ Edge(G)}|

}︁
,

where P = {p ∈ Nodes(G) | p.type = Process ∧ p /∈ Dynamic WPs}

To avoid potential dependency explosion caused by the
boundary nodes, the CondExp approach limits the extent of
vicinity expansion from such nodes (while expanding from
other nodes as usual). Specifically, it expands N ′′ hops from
each boundary nodes, where N ′′ is a parameter satisfying
N ′′ < N . Section 4.4 evaluates this approach under different
parameter values.

Example 8. Figure 8 (left) illustrates an example of two
boundary nodes, i.e., the root bash process node, which is
extracted as the ultimate ancestor of other processes, and a
node corresponding to shared library (.so) files [54], which
are commonly used by processes in Unix-like operating
systems. Figure 8 (right) shows the CondExp approach with
N= 2 and N ′= 0, where the expansion of static and dynamic
WPs’ vicinity is terminated at the boundary nodes.

Implementation. To implement those correlation discovery
approaches, we have developed 19 query patterns to
generate the corresponding Cypher queries in Python. For
the K-Shortest Paths approach, we aggregate the parallel
edges between each pair of nodes using gds.graph.project,
and utilize Yen’s algorithm [55] from the Neo4j Graph
Data Science (GDS) library [56] to compute a number of
shortest paths between two nodes.

POI/ Static WPs

Dynamic WPs (ancestors)

Process

name= bash

Pid=15

File

Path= /lib64/ld-

linux-x86-64.so.2

Boundary nodes

Shared Library

Root bash

Nodes connected to the boundary nodes (not included in the expansion)

Conditional 2-hop vicinity

Figure 8: Example of the CondExp approach.

3.4. Outcome Utilization

Since the main outcome of CONTEXTS is a subgraph that
contains PG nodes and edges relevant to the given incident,
it can be directly utilized by analysts to reduce the scope
of attack investigations. Moreover, this subgraph (instead
of the original PG) can be used as the input for existing
provenance-based attack investigation solutions, and the
significantly reduced size of such an input can potentially
improve their effectiveness, as demonstrated in Section 4.3.
Additionally, the parameterized approach of CONTEXTS
allows analysts to control the scope and size of its outcome
(e.g., through adjusting K, N , etc.) based on their needs,
as demonstrated through our parameter tuning experiments
(Section 4.4). Finally, the outcome of CONTEXTS can be
further utilized for performing root cause analysis and
enriching IDS rule-sets, as detailed in the following.
Root Cause Analysis. As one of the common goals of
attack investigation, identifying the root cause of an incident
is usually crucial for attack prevention or mitigation [27],
[57], [58]. To assist analysts in such a challenging task, the
outcome of CONTEXTS is designed to include additional
node labels that can be used by analysts to prioritize their
analysis of the root cause. Those node labels can be divided
into two main categories, i.e., (i) labels that reflect graph
theory information, such as the rank of paths including the
nodes and the number of hops away from an informative
point, (ii) labels that reflect semantics of the nodes, such
as the alert contexts associated with informative points, the
ancestor processes of dynamic waypoints, and the system
activities represented by boundary nodes. Furthermore, the
outcome of CONTEXTS includes auxiliary information that
allows it to (i) order the PG nodes based on the time of their
occurrence, and (ii) map those nodes back to corresponding
data items in the system traces (e.g., Auditd logs adopted by
SPADE [47]). Those features can benefit root cause analysis
applications that rely on system calls [59], [60], [61], their
arguments [27], [58], [62], and their timestamps [63].

Example 9. In Figure 9, CONTEXTS helps analysts derive
a sequence of system calls as the root cause. Specifically,
the node labels allow analysts to focus on the vicinity of
informative points and order the edges (i.e., system calls)
chronologically to form a sequence (from fork to close).

IDS Rule-set Enrichment. The rule-set of a rule-based
IDS is typically maintained based on historical data about
known attacks and human knowledge (e.g., derived from

T
im

el
in

e

349 → fork()

361 → pipe([3,4], 0)

379 → open(“SUID”) = 5

398 → read(1, 4096) = 1016

401 → splice(...) = 0

420 → close(5)

1. Focusing on the vicinity of informative points

cl
o

se

fork
Process

Exp

re
ad

3
7

9

3493
9

8

4
2

0

o
p

en

Sequence of malicious system calls

3. Mapping back to system call logs

Pipe
Label:WP2

SUID
Label:WP2

2. Ordering events based on occurrence time

POI/ Static WPs

Dynamic WPs (ancestors)

Dynamic WPs (descendants)

Figure 9: Example of root cause analysis utilizing
CONTEXTS outcome.

reverse engineering or honeypot analysis [64], [65], [66]).
Although not designed for this purpose, the dynamic
waypoint approach of CONTEXTS (detailed in Section 3.3)
may provide an opportunity to construct new IDS rules to
detect malicious activities that are conducted before (e.g.,
initial access or execution) or after (e.g., persistence or
exfiltration) a detected incident. Specifically, such activities
can be identified through investigating the ancestor and
descendant nodes of static waypoints and POI. New IDS
rules would be created to detect those activities, if they
are not yet detected by the IDS, but are either (i) executed
prior to the incident, or (ii) can be part of other attacks.
The former case can enable an early detection, while the
latter may potentially allow detecting unknown attacks.

Example 10. Figure 10 shows how CONTEXTS helps
forming a new rule for Falco IDS [42] to enable the
early detection of CVE-2022-0492, which is a container
escape attack leveraging the Cgroup notify on release
feature [67]. The incident alert mentions a shell opened by
a root user, indicating a privilege escalation. The outcome
of CONTEXTS enables the analyst to trace the static WPs
(in red) back to their ancestors (in blue). This reveals an
unusual relationship (mount with the cgroups filesystem
type) between an ancestor process node (the sh process) and
the WP (the /tmp/escape file). Accordingly, the analyst can
create a new rule to detect the use of the mount system calls
(evt.type="mount") with cgroups as filesystem type
(evt.args.flags contains "cgroups"), and thus
enable the early detection of a similar future attacks.

Static WPs

Dynamic WPs (ancestors)

Dynamic WPs (descendants)

- rule: Process mounted "cgroup"
 condition: >
 evt.type = "mount" and
 evt.args.flags contains "cgroup"
 output: >
 Process ($proc.name) mounted cgroup FS.
 priority: WARNING

1. Identifying unique features of ancestors/descendants

Process

name = sh
File

path = /tmp/escape

mount (..., /tmp/escape, cgroup)

2. Generating an IDS ruleAlert: Shell

opened as su!

Figure 10: Example of updating IDS rules utilizing
CONTEXTS outcome.

4. Evaluation

This section evaluates CONTEXTS by answering the
following research questions:
RQ1: How effective is CONTEXTS in identifying the exploit
of real-world vulnerabilities, while working independently?
RQ2: How much can CONTEXTS improve the results of ex-
isting pruning solutions, while working as a pre-processor?
RQ3: How accurate are the different correlation approaches
of CONTEXTS, and what are their optimal parameters?
RQ4: How scalable is CONTEXTS in terms of handling
PGs with an increased amount of irrelevant nodes?
RQ5: How do real users from different backgrounds think
about CONTEXTS while using it for attack investigation?

4.1. Experimental Settings

All the experiments are performed on a testbed
consisting of an IDS (Falco [42]) and a PG generation tool
(SPADE [47]) running on a virtual machine (VM) with 16
vCPUs and 32GB of RAM with various Linux distributions
and kernel versions depending on the investigated attacks.
Dataset1 Preparation. To evaluate CONTEXTS, the exper-
imental dataset needs to satisfy the following two require-
ments. (i) Since both the IDS and PG generation tools (Falco
and SPADE) work at the kernel level, the dataset naturally
focuses on kernel-level and system call-related CVEs. (ii)
The experimental results need to be validated against the ac-
tual system calls involved in executing the exploit code, and
therefore the dataset should consist of CVEs with available
exploit codes2. To the best of our knowledge, none of the
publicly available datasets (e.g., the DARPA TC dataset [69]
and the Unicorn dataset [70]) can meet both of those re-
quirements. To address this challenge, we generated our own
datasets by implementing real attacks that target different as-
pects of the Linux kernel (detailed in Table 5 in Appendix B)
using proof-of-concept exploit codes (e.g., [71], [72], [73]).
We set up a separate virtual machine to implement each
CVE by running a Linux version that was unpatched against
the corresponding vulnerability (also detailed in Table 5).
We used Vagrant for VM deployment with VirtualBox as the
provider, and we utilized “bento”, “generic” and “ubuntu” as
base boxes [74]. The kernel versions required adjustments
(either downgrading or upgrading) in some cases since the
default kernel in the Vagrant boxes was typically patched.
Result Evaluation. To evaluate the effectiveness of
CONTEXTS in identifying the exploit of a vulnerability, we
compare its results to the subgraph of the PG that is related
to the execution of the corresponding exploit code, namely,
the reference subgraph (Appendix C details the extraction
of a reference subgraph). Specifically, we identify the edges
in the CONTEXTS result that correspond to system calls
executed by the exploit code. To ensure exact matches,
we map each edge in the reference graph to our result
through the unique edge ID assigned by SPADE during

1. Our dataset is available online [68].
2. Note CONTEXTS does not require any exploit code to function.

PG generation, which also ensures the uniqueness of the
corresponding nodes. As the edge IDs change over each run,
we only compare the results with the reference subgraph
obtained for the same run. We report True Positive (TP)
as the number of edges that appear in both the reference
subgraph and CONTEXTS results, and False Positive (FP) as
the number of edges that appear in CONTEXTS results, but
not in the reference subgraph. Additionally, we report the
True Positive Rate (TPR) and False Positive Rate (FPR).

4.2. Effectiveness

This section answers RQ1 by evaluating the
effectiveness of CONTEXTS as a standalone tool for
attack investigation. Section 4.2.1 presents the overall
results for all attacks, and Section 4.2.2 provides more
detailed insights on two attacks (due to page limits).

4.2.1. General Results. The first column of Table 1 shows
the list of CVEs involved in the implemented attacks. The
second column reports the size of the reference subgraph.
The third column shows whether the IDS can directly
detect the attack, or can only detect its post-exploitation
consequences (e.g., unauthorized access to a sensitive file).
The next two columns show the availability of static WPs
based on two sources of external information, i.e., IDS rules
and CVEs. The CVEs in Table 1 are chosen to challenge
CONTEXTS with increasingly difficult cases. Specifically,
the first six CVEs have static WPs from both the matching
IDS rules and the corresponding CVE descriptions. In
particular, the sixth row represents a chain of two CVEs
and the result of CONTEXTS in correlating the POI and
the corresponding WPs. The next three CVEs only have
static WPs from the IDS rule, whereas the next four only
have static WPs from CVE descriptions (the IDS rules
can only generate post-exploitation alerts, which cannot be
used for static WPs). Finally, the last seven CVEs have no
static WPs at all. Dynamic WPs are always available since
they are based on ancestor or descendant processes, which
extends the applicability of CONTEXTS. We will provide
more details of such WPs in Section 4.2.2.

As the results show, CONTEXTS achieves 100% TPR for
19 out of 20 CVEs, with an FPR below 0.6% for 16 out of
20. The first 13 CVEs have both static and dynamic WPs
available, which helps CONTEXTS to achieve a perfect TPR
and relatively low FPRs. Among these, the chained CVEs
(the sixth row) shows a relatively higher FPR due to the
inclusion of some irrelevant nodes along the paths connect-
ing the informative points of the two CVEs. The last seven
CVEs lack static WPs, but CONTEXTS can still provide
perfect TPRs through its use of dynamic WPs (and allowing
a one-hop expansion from the boundary nodes for the last
four CVEs, i.e., N ′′= 1 in the Conditional Expansion ap-
proach, as detailed in Section 3.3). The higher FPRs are due
to the combined effect of lacking static WPs and complex
exploit codes (as evidenced by larger reference subgraphs).
In particular, the lower TPR in the last CVE is due to the
limitation in obtaining dynamic WPs from the POI, which
appears in a new root shell due to the nature of the attack.

TABLE 1: Overview of the implemented attacks, reference
subgraph size, nature of detection, availability of WPs,
and overall results of CONTEXTS (using the Conditional
Expansion correlation approach, with N ′′= 1 for the results
indicated with ∗ and N ′′= 0 for the rest). Note (1)/(2)
indicate different exploitations of the same CVE.

CVE

Reference
Subgraph IDS

Detection

Static WPs Dynamic
WPs

CONTEXTS
Results

of
Nodes

of
Edges

IDS
Rules

CVE
Info. TPR FPR

2021-3156 133 291 Direct ✓ ✓ ✓ 100% 0.31%
2022-0847(1) 56 98 Direct ✓ ✓ ✓ 100% 0.02%
2022-0847(2) 99 297 Direct ✓ ✓ ✓ 100% 0.03%
2021-4034 454 977 Direct ✓ ✓ ✓ 100% 0.3%
2024-48990 1,675 5,529 Direct ✓ ✓ ✓ 100% 0.2%
2021-44228
& 2022-0847 174 2,048 Direct ✓ ✓ ✓ 100% 3.04%

2023-32233 1,361 1,493 Direct ✓ − ✓ 100% 0.29%
2016-6516 52 77 Direct ✓ − ✓ 100% 0.04%
2021-22555(1) 37 94 Direct ✓ − ✓ 100% 0.04%
2023-0386 362 690 Indirect − ✓ ✓ 100% 0.39%
2016-5195 62 102 Indirect − ✓ ✓ 100% 0.58%
2023-32629 304 576 Indirect − ✓ ✓ 100% 0.24%
2023-22809 121 596 Indirect − ✓ ✓ 100% 0.44%
2023-31248 93 186 Indirect − − ✓ 100% 0.11%
2021-3490 66 111 Indirect − − ✓ 100% 0.36%
2021-22555(2) 41 78 Indirect − − ✓ 100% 0.17%
2022-34918 93 165 Indirect − − ✓ 100%∗ 4.19%∗

2022-2639 307 590 Indirect − − ✓ 100%∗ 27.84%∗

2021-4154 1,797 2,406 Indirect − − ✓ 100%∗ 18.21%∗

2022-2588 121 2,254 Indirect − − ✓ 96.76%∗ 13.23%∗

4.2.2. Case Study. This section demonstrates the effective-
ness of CONTEXTS by providing more details on how it
works for the 10th and 11th CVEs in Table 1. Those CVEs
are more representative as they correspond to sophisticated
attack scenarios involving different types of WPs.
CVE-2023-0386. For this attack, the IDS detects a
post-exploitation step and generates a “Sensitive file
opened for reading” alert (i.e., the POI), indicating that the
/etc/shadow file is opened at time=3:18:21. CONTEXTS
investigates this incident as follows. First, it searches for
/etc/shadow file node(s) with an edge representing
the open operation, and labels them as the POI. Second,
it generates queries to perform initial pruning based on
the temporal information in the POI (i.e., time=3:18:21)
(Section3.2). Third, it searches for CVE entries with the
impact of privilege escalation to generate WP queries, and
prunes the obtained WPs based on their relevance to the
POI (Section 3.2). In this specific case, the WP queries
search for mount, overlay, or overlayfs in the
command property of process nodes to locate the WPs
relevant to the POI. Figure 11 illustrates the simplified result
of CONTEXTS (which provides 100% TPR, as mentioned
in Table 1). In this result, the POI is shown in step (5). The
static WPs are shown in shaded boxes in steps (1) and (2),
and all other boxes of type Process represent dynamic WPs.
From this result, the analyst can easily observe that the
attacker (i) creates a filesystem in user space; (ii) creates an
isolated namespace, and mounts the overlay filesystem with
specified lower, upper, and work directories; (iii) leverages
the overlay filesystem to combine directories in a new

Process

exploit

Process

fusermount

execve

Process

ls
Process

touch

Process

sh mount

overlay

File

/dir/merge/file

open

Directory

/dir/merge

openProcess

mount overlay

execve

Process

sh -c

Directory

/dir/lower

open

Directory

/dir/*

File

/dir/upper/file

Process

cat

File

/etc/shadow

open open

Process

unshare

execve

(1) (2) (3) (4) (5)

execve

WP

POI

Abbreviation

of operations

open

execve

execve

Figure 11: The result of CONTEXTS (simplified) showing
the main steps in exploiting CVE-2023-0386.

Process

exploit

(1) (2) (3)

madvise
DONTNEED

open

execve

mprotect, mmap(write)

File
setuid

bit

m
m

ap
(r

ea
d

)

o
p

en

Process

madvise

Process

waitforwrite

Process

selfmem

Memory
mmap(write)

madvise, write

load

Process

cat

File

/etc/shadow

open

(4)

Process

setuid-bit

WP

POI

Abbreviation

of operations

Figure 12: The result of CONTEXTS (simplified) showing
the main steps in exploiting CVE-2016-5195 (all memory
interactions are shown through a single node for readability).

mount namespace, by creating a new file in the merged
directory; (iv) executes a file located in the upper directory
of the overlay filesystem, which allows the attacker to run
with elevated privileges due to the manipulation of the
mount namespaces and overlay filesystem; (v) accesses the
/etc/shadow file, which triggers the IDS alert.
CVE-2016-5195. Although this is a different CVE, the alert
generated by the IDS is similar, since it can only detect the
post exploitation. Therefore, CONTEXTS follows similar
steps to identify and annotate the POI and WPs, until it
identifies the madvise operation as a WP. Figure 12 shows
the simplified result of CONTEXTS, from which the analyst
can observe that the attacker’s script (i) takes a setuid bit
binary and maps it onto memory using mmap; (ii) creates
two threads to implement a race condition, i.e., the madvise
process continuously calls madvise on the mapped mem-
ory with the DONTNEED flag, which indicates to the kernel
that the memory is not needed, but in reality leads to a race
condition in the copy-on-write mechanism. As a result, the
selfmem process repeatedly tries to write a crafted payload
into the same memory space; (iii) executes the payload, i.e.,
a shellcode whose execution grants escalated privileges;
(iv) opens the /etc/shadow file, which triggers the alert.

4.3. Enhancing Existing Pruning Methods

This section answers RQ2 by integrating CONTEXTS
with several popular PG pruning strategies, and comparing
the TPR and FPR results with, and without CONTEXTS
working as a pre-processor. As illustrated in Table 4

TABLE 2: CONTEXTS as a pre-processor. (B): Baseline, (C): With CONTEXTS. DS1: 10k, DS2: 160k, DS3: 1M.

Backward/Forward Path Anomaly Path Time Path Anomaly Time (Time Interval, Path Length)
Threshold Path Length Time Interval (10s,) (120s,)

0.8 0.9 1 none 3 5 10 20 10s 30s 60s 120s 3 5 10 20 3 5 10 20

D
S1

B TP 18 149 161 654 277 300 308 308 269 310 310 310 258 263 265 265 277 300 308 308
TPR 2.61% 21.6% 23.3% 94.8% 40.1% 43.5% 44.6% 44.6% 39.0% 44.9% 44.9% 44.9% 37.4% 38.1% 38.4% 38.4% 40.1% 43.5% 44.6% 44.6%

C TP 18 145 157 651 275 298 306 306 267 308 308 308 257 262 264 264 275 298 306 306
TPR 2.61% 21.0% 22.8% 94.3% 39.9% 43.2% 44.3% 44.3% 38.7% 44.6% 44.6% 44.6% 37.2% 38.0% 38.3% 38.3% 39.9% 43.2% 44.3% 44.3%

B FP 2 2.7k 2.7k 5.9k 2.9k 3.2k 3.2k 3.2k 194 3.2k 3.2k 3.2k 144 184 184 184 2.9k 3.2k 3.2k 3.2k
FPR 0.02% 29.8% 29.8% 64.8% 31.2% 34.5% 34.6% 34.6% 2.11% 34.8% 34.8% 34.8% 1.6% 2.00% 2.00% 2.00% 31.2% 34.5% 34.6% 34.6%

C FP 0 12 12 34 1 4 6 6 0 7 7 7 0 0 0 0 1 4 6 6
FPR 0% 0.13% 0.13% 0.37% 0.01% 0.04% 0.07% 0.07% 0% 0.08% 0.08% 0.08% 0% 0% 0% 0% 0.01% 0.04% 0.07% 0.07%

D
S2

B TP 6 152 164 565 263 284 291 291 42 293 293 293 38 38 38 38 263 284 291 291
TPR 0.92% 23.3% 25.2% 86.8% 40.4% 43.6% 44.7% 44.7% 6.45% 45.0% 45.0% 45.0% 5.84% 5.84% 5.84% 5.84% 40.4% 43.6% 44.7% 44.7%

C TP 6 152 164 564 262 283 290 290 40 292 292 292 38 38 38 38 262 283 290 290
TPR 0.92% 23.3% 25.2% 86.6% 40.2% 43.5% 44.5% 44.5% 6.14% 44.9% 44.9% 44.9% 5.84% 5.84% 5.84% 5.84% 40.2% 43.5% 44.5% 44.5%

B FP 0 7.8k 7.8k 9.8k 25.3k 28.3k 28.3k 28.3k 10 181 181 396 0 0 0 0 382 382 382 382
FPR 0% 4.98% 4.98% 6.26% 16.1% 18.1% 18.1% 18.1% ≈0.0% 0.12% 0.12% 0.25% 0% 0% 0% 0% 0.24% 0.24% 0.24% 0.24%

C FP 0 16 16 31 8 9 9 9 0 0 0 1 0 0 0 0 1 1 1 1
FPR 0% 0.01% 0.01% 0.02% ≈0.0% ≈0.0% ≈0.0% ≈0.0% 0% 0% 0% ≈0.0% 0% 0% 0% 0% ≈0.0% ≈0.0% ≈0.0% ≈0.0%

D
S3

B TP 157 157 169 580 273 298 305 305 42 306 306 308 38 38 38 38 273 298 305 305
TPR 23.6% 23.6% 25.4% 87.2% 41.1% 44.8% 45.9% 45.9% 6.32% 46.0% 46.0% 46.3% 5.71% 5.71% 5.71% 5.71% 41.1% 44.8% 45.9% 45.9%

C TP 157 157 169 578 268 293 300 300 41 302 302 303 38 38 38 38 268 293 300 300
TPR 23.6% 23.6% 25.4% 86.9% 40.3% 44.1% 45.1% 45.1% 6.17% 45.4% 45.4% 45.6% 5.71% 5.71% 5.71% 5.71% 40.3% 44.1% 45.1% 45.1%

B FP 16.8k 16.8k 16.8k 26.1k 148k 156k 159k 159k 10 191 191 750 0 0 0 0 710 730 730 730
FPR 1.82% 1.82% 1.82% 2.84% 16.1% 16.9% 17.3% 17.3% ≈0.0% 0.02% 0.02% 0.08% 0% 0% 0% 0% 0.08% 0.08% 0.08% 0.08%

C FP 24 24 24 48 7 7 8 8 0 0 0 5 0 0 0 0 4 4 4 4
FPR ≈0.0% ≈0.0% ≈0.0% ≈0.0% ≈0.0% ≈0.0% ≈0.0% ≈0.0% 0% 0% 0% ≈0.0% 0% 0% 0% 0% ≈0.0% ≈0.0% ≈0.0% ≈0.0%

(Section 5), existing PG solutions usually combine a basic
pruning strategy (either a backward/forward search, or a
path-based search [10]) with other complementary (e.g.,
anomaly [10] or time-based [3]) strategies. Therefore, we
re-implement those strategies and combine them to form
five different pruning approaches. Specifically, the first
and second approaches perform a backward/forward search
and check the event timings, while the second approach
further utilizes anomaly scores to filter edges. The last three
approaches search for paths connected to the POI and further
utilize anomaly scores, time intervals, and both, respectively.

Table 2 shows the baseline result (i.e., applying
each existing pruning approach on the original PG),
and the result with CONTEXTS (i.e., using CONTEXTS’s
output as the input of each existing pruning approach).
The top, middle, and bottom rows show the results on
DS1 (size 10k), DS2 (size 160k), and DS3 (size 1M),
respectively. The Backward/Forward column shows both
the first (under threshold of “none”) and second approach
(with the anomaly threshold [10] ranging from 0.8 to 1
following [9]), and the next columns show the other three
approaches. Overall, the results show that using CONTEXTS
as a pre-processor does not significantly affect the TP/TPR
values, but can significantly reduce the FP/FPR values,
with FPRs close to zero for all approaches and their
parameter settings. More importantly, while the number of
FPs of existing approaches can reach 2k–159k, CONTEXTS
can reduce these to less than 50 in all cases. This is
important considering that human analysts typically cannot
comprehend a PG with thousands of nodes and edges.

More specifically, (i) the baseline backward/forward
approach (threshold “none”) provides the highest TPRs
for all dataset sizes, but also lead to high FPRs. With the
help of CONTEXTS, the FPR is reduced to almost zero,
while preserving the high TPR. (ii) The backward/forward
with anomaly approach under threshold 0.8 can reduce the
FPR values to similar levels as CONTEXTS for DS1 and
DS2, but not for DS3. However, this also comes with an

unacceptably lower TPR. (iii) The path-anomaly approach
has low TPRs (less than 50%), and very high FPRs (with
FPs ranging from 2.9k to 160k), which are again reduced to
almost zero by CONTEXTS (FPs reduced to less than 10).
(iv) The path-time approach (the third column) has similar
TPRs and lower FPRs (under smaller time intervals), which
are again reduced to almost zero (FPs less than 10) by
CONTEXTS. (v) The last approach (combining path-based
pruning with both time and anomaly) can reduce FPRs,
but also has low TPRs (less than 50%), and CONTEXTS
achieves similar reduction in FPRs.

4.4. Effectiveness and Optimal Parameters of the
Correlation Approaches

This section answers RQ3 by evaluating the correlation
approaches (Section 3.3) and identifying their optimal
parameter(s) (i.e., K, N , N ′, and N ′′) for 10 selected
CVEs. Among these, seven CVEs have static WPs (selected
from the first 13 CVEs listed in Table 1) and three do not
(selected from the last seven CVEs). The former seven
CVEs are used to evaluate all correlation approaches,
whereas the latter three are additionally used for StatDyn
and CondExp (as they can handle CVEs with no static WPs).

K-Shortest Paths (KPath). Figure 13 (top) shows the
results of applying the KPath approach. Overall, the KPath
approach has a relatively low TPR for all the attacks, since it
only focuses on connecting the informative points but does
not consider relevant nodes close to (but not on) the paths.
This is also reflected in the fact that, although increasing the
value of K improves the TPR, the improvement eventually
flattens, which shows the limitation of only considering
nodes on the paths. On the other hand, the FPR stays rela-
tively low for most attacks, which shows the KPath approach
is indeed a promising starting point for identifying relevant
PG nodes, as also confirmed in our user study (Section 4.6).

1 20 40 60 80
0

25
50
75

100

%

K=

CVE-2021-3156

1 20 40 60 80
0

25
50
75

100

K=

CVE-2022-0847

1 20 40 60 80
0

25
50
75

100

K=

CVE-2021-4034

1 20 40 60 80
0

25
50
75

100

K=

CVE-2023-32233

1 20 40 60 80
0

25
50
75

100

K=

CVE-2023-0386

1 20 40 60 80
0

25
50
75

100

K=

CVE-2016-5195

1 20 40 60 80
0

25
50
75

100

K=

CVE-2023-32629
KPathTPR FPR

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

%

K=

CVE-2021-3156

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2022-0847

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2021-4034

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2023-32233

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2023-0386

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2016-5195

N=1 N=2 N=3
1 10 20 30 1 10 20 30 1

0
25
50
75

100

K=

CVE-2023-32629
PthVic (N'=1)

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

%

K=

CVE-2021-3156

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2022-0847

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2021-4034

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-32233

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-0386

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2016-5195

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-32629

1 2 3
N

0
25
50
75

100
CVE-2023-31248

1 2 3
N

0
25
50
75

100
CVE-2021-3490

1 2 3
N

0
25
50
75

100
CVE-2022-2639

StatDyn (N'=1)

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

%

K=

CVE-2021-3156

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2022-0847

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2021-4034

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-32233

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-0386

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2016-5195

N=1 N=2 N=3
110 20 110 20 1

0
25
50
75

100

K=

CVE-2023-32629

1 2 3
N

0
25
50
75

100
CVE-2023-31248

1 2 3
N

0
25
50
75

100
CVE-2021-3490

1 2 3
N

0
25
50
75

100
CVE-2022-2639

CondExp (N'=1, N''=0)

Figure 13: The effectiveness of KPath (top), PthVic (upper-middle), StatDyn (lower-middle), and CondExp (bottom).

Path-guided Vicinity (PthVic). Figure 13 (upper-middle)
shows the results of PthVic for different combinations of N
and K, with N ′= 1. Compared to KPath, the significantly
higher TPR values of PthVic indicate the benefit of its
additional feature, i.e., expanding from the shortest paths.
On the other hand, the TPRs generally flatten after a
certain combination of K and N , and the FPRs also start
to increase at a certain point. Unlike KPath, PthVic can
provide a high TPR and acceptable FPR for CVE-2023-
32233 and CVE-2021-4034, although its results are still not
satisfactory for CVE-2023-0386 (all three with complex
exploit codes), which demonstrates the inherent limit of
such graph-theoretic approaches.

Vicinity of Static and Dynamic WPs (StatDyn). Figure 13
(lower-middle) shows the results of the StatDyn approach
for different values of N and K, with N ′= 1. The results are
reported for all of the 10 attacks, since StatDyn can leverage
dynamic WPs for the last three attacks (with no static WPs).
Compared to PthVic, StatDyn achieves consistently higher
TPR results (more than 93%) and lower FPRs (less than
5%) under N= 1 (and K= 1, when applicable) for nine out
of ten attacks, which even outperforms PthVic under larger
parameters (N= 2, K= 1). This clearly shows the benefit of
additionally considering dynamic WPs in StatDyn. On the
other hand, the FPRs generally grow fast for higher values
of K and N , which indicates a dependency explosion issue.
Overall, those results show that StatDyn can be effective
even in the lack of static WPs, although the high FPRs
introduced by dependency explosion remains a challenge.

Conditional Expansions (CondExp). Figure 13 (bottom)
presents the results of the CondExp approach. The results
show, for nine attacks, CondExp (N ′′= 0) achieves similar
TPRs as StatDyn, and significantly lower FPRs even under

larger N values. This flat FPR curve clearly shows the
benefit of limiting the expansion at boundary nodes in
CondExp and allows us to choose a larger N to further boost
TPR. For instance, CondExp under N= 2 and N= 3 can
achieve 100% TPR with less than 0.6% FPR for six of the
seven attacks with static WPs, and two attacks without static
WPs (CVE-2023-31248 and CVE-2021-3490). For the more
sophisticated attacks, such as (CVE-2022-2639), the best
results of CondExp are obtained under N ′′= 1 (under which
CondExp becomes equivalent to StatDyn). Overall, those re-
sults show that CondExp is very effective in most cases, and
only faces challenges when the lack of static WPs is paired
with a complex attack scenario (e.g., CVE-2022-2639). This
limitation is expected since the key idea behind CONTEXTS
is to leverage external information (i.e., static WPs).

4.5. Scalability

To answer RQ4, this section evaluates the scalability
of CONTEXTS on larger PGs with more irrelevant nodes.
Specifically, we apply CONTEXTS (with Conditional
Expansion) on 15 datasets, each of which contains PGs
with increasing sizes, and evaluate both the time taken by
CONTEXTS and the sizes of its outputs. All the PGs are
generated based on the data collected from a virtual machine
on which the same CVE (CVE-2022-0847, as shown in
the second row of Table 1) is exploited under increasing
workloads of normal applications (concurrent threads of
Nginx, Flask, SQLite, and the Linux stress utility) and
over time intervals of increasing lengths. The results are
averaged over 100 iterations under similar conditions.

Figure 14 (left) shows the sizes of the CONTEXTS results
(in terms of the number of edges) for various durations
of data collection (reported in the colored boxes). While

0 50000 100000 150000
Size of Original PG

(# of Edges)

0

100

200

Si
ze

 o
f O

ut
pu

t G
ra

ph
(#

 o
f E

dg
es

)

21.2 35.7 68.1 131.6 260.4
21.1 35.4 69.4 134 259.5

20.6 34.7 65.6 133.1 262

0 50000 100000 150000
Size of Original Graph

(# of Edges)

10

20

30

Pr
oc

es
si

ng
 T

im
e

(s
)

Workload Level
Low Medium High

Figure 14: The sizes of the outputs (left) and the processing
time (right) of CONTEXTS for PGs collected under different
workloads and durations.

the size of the original PG grows from 6,000 to more
than 180,000 edges, the size of the subgraph produced by
CONTEXTS remains under 200 edges. This demonstrates the
capability of CONTEXTS in pruning irrelevant nodes and
edges from the PG, regardless of its size. The slight variation
in the output sizes is due to a small number of FPs connected
to shared files (mostly, Linux locales). Figure 14 (right)
reports the time taken by CONTEXTS for processing those
PGs, measured on a virtual machine with 64GB of memory
and 16 vCPUs. The results show that CONTEXTS can pro-
cess graphs with more than 180,000 edges in around 30s,
and its execution time grows almost linearly with the size of
the PG. This result largely depends on the delay of Neo4j,
and can be improved using more efficient graph databases.

4.6. User Study

To answer RQ5, we conducted a user-based study3

following standard practices [75]. During the study, 18
participants from both academia and industry were asked to
identify the subgraph of a PG and the root cause related to a
highlighted POI, with and without the help of CONTEXTS.
All participants had a general background in security, with
varying levels of knowledge and experience in provenance
analysis and Linux kernel. Table 3 shows the distribution of
participants, their levels of familiarity with those concepts,
and the average agreement scores for each question.

Specifically, at the beginning of the study, the
participants were given a PG generated for an exploit of
CVE-2023-0386 (explained in Section 4.2.2). The complete
PG has 3,425 nodes and 9,869 edges, with a highlighted
alert as the POI (displayed in Neo4j Browser [49]). The
participants were asked to perform the investigation tasks
without, and with, CONTEXTS, using its different correlation
approaches. To limit the duration of the study, we imposed
time constraints for each task (10 minutes for Q1 and Q2,
respectively, and five minutes for each remaining statement).
For each task, we asked the participants to express their level
of agreement (Strongly Agree, Agree, Neutral, Disagree, or
Strongly Disagree) with our provided statements (the list
of complete statements can be found in Appendix D). To

3. This study has been approved by our university’s Institution Review
Board (IRB). We designed the questions and study materials following
standard practices for usability questionnaires [75].

quantify the results, we assign an integer between one and
five to each level (five represents Strongly Agree).

TABLE 3: Distribution of participants and their levels of
of agreement. VL, L, M, H, and VH mean Very Low, Low,
Medium, High, and Very High, respectively. The results in
each cell are the average answers of participants with the
same level of familiarity with the Linux kernel (∗/) and
with provenance analysis (/∗), respectively.

Industry (7) Academia (11)
Famil. VL L M H VH VL L M H VH
of

Partic.
1/0 1/2 2/2 1/1 2/2 0/2 1/3 3/3 6/2 1/1

Q1 5./- 4./4.5 4.5/3.5 3./5. 5./5. -/2.5 5./4.33 4.67/4.67 3.67/4.5 4./4.
Q2 4./- 5./4.5 4.5/4.5 4./4. 5./5. -/3.5 4./4.33 5./4.67 4./4.5 2./2.
Q3 5./- 5./5. 5./5. 5./5. 5./5. -/3.5 5./5. 3.33/3.33 4./3.5 4./4.
Q4 5./- 5./5. 5./5. 5./5. 5./5. -/4. 4./3.67 4.33/4.67 4.33/5. 5./5.
Q5 4./- 4./5. 5./4.5 5./4. 5./5. -/4.5 5./5. 4.67/4.67 4.83/5. 5./5.
Q6 4./- 5./4.5 5./4.5 4./4. 4.5/5. -/5. 5./5. 4./4.67 4.67/4.5 5./5.
Q7 5./- 5./5. 5./5. 5./5. 5./5. -/5. 5./4.67 5./5. 4.83/5. 5./5.
Q8 3./- 4./4.5 4.5/4.5 5./3. 4.5/4.5 -/5. 5./4.33 4.33/4.67 4.83/5. 5./5.
Q9 5./- 4./4. 4.5/4.5 5./5. 4.5/5. -/4.5 5./4.67 4./4.33 4.67/4.5 3./3.
Q10 5./- 5./4.5 4.5/5. 5./5. 5./5. -/4.5 5./4.33 3.67/3.67 4.33/4.5 4./4.
Avg. 4.5/- 4.6/4.65 4.75/4.6 4.6/4.5 4.85/4.95-/4.2 4.8/4.43 4.3/4.43 4.42/4.6 4.2/4.2

Results. Figure 15 presents the results of our user study.
Overall, the large majority of participants agreed or strongly
agreed with all the statements. In particular, when presented
with the results of “Conditional Expansion of WPs” (Q7),
all participants except one (who agreed) strongly agreed
with the statement (that the approach) “Greatly reduces
irrelevant nodes”. Most participants (from both academia
and industry) reported that they could not find the root
cause of the attack without our solution (Q1), even when
they were already given the attack scenario (Q2). Among
the statements regarding different correlation approaches,
K-Shortest Paths (Q3) showed the largest amount of
disagreement (three disagreed), showcasing the limitations
of this building block approach compared to more advanced
ones (e.g., PthVic, StatDyn, and CondExp). Q1 and Q2 also
showed some levels of disagreement, which we attribute
to the time constraints imposed, since some participants
believed they could have found the root cause if they were
given more time. Among the statements asking about the
amount of false positives (FPs) and false negatives (FNs),
interestingly, the participants tended to agree more when
asked about the FPs (Q5: 4.78, Q7: 4.95) than when asked
about the FNs (Q4: 4.61, Q6: 4.55). This suggests that
irrelevant nodes may have had more negative impact on the
analysis than missed relevant nodes.

The last row of Table 3 shows the average level of
agreement depending on the background (industry or
academia) and level of familiarity with the two related
concepts. The results show that participants from the
industry generally answered more positively to all the
statements than those from academia. We believe that
industry professionals who were acquainted with those
concepts (especially PGs) tended to be more sensitive to the
tediousness of unassisted investigation tasks (Q1 and Q2),
especially if these must happen very frequently (e.g., due to
a large amount of false alerts). Among the specific results

(No CONTEXTS)

(KPath)

(PthVic)
(StatDyn)

(CondExp)

(Overall)

10 0 20# of Answers

Q1: Impossible to find root cause
Q2: Time-consuming even with attack story
Q3: Static WPs and paths help understanding
Q4: Some malicious nodes are missing
Q5: Reduces the number of irrelevant nodes
Q6: Captures majority of malicious nodes
Q7: Greatly reduces irrelevant nodes
Q8: Result is very close to ground truth
Q9: Faster and easier to identify root cause
Q10: Sufficient to identify malicious syscalls

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 15: The (shortened) questions of the user study and the result distribution.

of each question, one outlier is that one participant from
academia with very high familiarity answered 2 (Disagree)
to Q2. This is due to the fact that our study did not allow
participants to change their answers once submitted (this
participant in fact changed his/her mind afterwards and
believed the right answers should have been 5 instead of 2).

The participants also provided us with additional
feedback during and after the study. First, the great
majority of users who were not familiar with PG analysis
reported feeling “overwhelmed” without using our solution
(Q1 and Q2). Second, only one academic user (who was
very familiar with Linux kernel vulnerabilities) was able to
identify a major part of the subgraph within the time limit
based on just the attack story, and still reported that s/he
agreed with Q2. Third, overall, many users (in particular
those who were familiar with Linux) showed interest in
using our solution. For instance, one academic user reported
that they “never thought about representing process and
files this way” and was “amazed by how complex CVEs
can be presented with such level of detail and clarity”.
Another participant showed interest in using our tool on a
vulnerability they were leveraging for their own project.

5. Related Work

Provenance-based attack investigation has received
extensive attention in the literature, as surveyed in [25].
To reduce the scope of analysis, there exist many PG
pruning approaches. Specifically, Table 4 lists some popular
approaches adopted by several state-of-the-art solutions.
Nonetheless, most pruning approaches also come with their
limitations. For instance, backward searching from the
POI can prune some irrelevant nodes but cannot prevent
dependency explosion [22]. Anomaly-based solutions can
avoid dependency explosion (e.g., [10], [12], [13], [14], [15],
[21]), while ensuring the completeness of training datasets
can be difficult in practice [9]. Some pruning approaches
(e.g., [4], [9]) rely on generic features such as node degrees,
which may not capture the semantics of attacks. Some solu-
tions [9], [10], [12] extract and merge paths while limiting
their lengths, which may miss attack-related events that are
farther away. Many solutions require multiple traversals
over large graphs, which may imply high overhead [25].
While most of the forensic analysis solutions only consider

TABLE 4: Popular pruning strategies of existing solutions.

CPR [22]

PrioTracker [12]

DEPIM
PACT [9]

NODOZE [10]

ATLAS [20]

SPARSE [19]

Zebra [23]

Backward (BW)
/ Forward (FW)

✓/✓
✓/✓

✓/−
✓/−

Paths to Alert ✓ ✓ ✓
Anomaly Score ✓ ✓ ✓
Time ✓ ✓ ✓ ✓
Data flow ✓ ✓ ✓ ✓
Node Degree ✓ ✓ ✓
Merging Edges ✓ ✓ ✓ ✓ ✓
Node Aggregation ✓

the POI as a starting point, CONTEXTS leverages external
information about the POI to further enhance the pruning.
Therefore, it can work in tandem with existing solutions and
enhance their results, as demonstrated in our experiments.

CONTEXTS can also work with some fine-grained
provenance-based anomaly detection approaches [13], [14],
[15] as well as threat hunting solutions [8], [16], [17],
[18], [76]. The former category of solutions prune the
PGs based on calculated anomaly scores, whose accuracy
inherently depends on the completeness of benign activities
(for training), and those approaches typically require
post-pruning to further reduce the size of the results (e.g.,
KAIROS [14] applies the PG reduction techniques of [22]).
Such approaches can potentially leverage CONTEXTS as
either a pre- or post-processing step (by regarding the
identified anomalous nodes as POIs). The latter category
of solutions can also leverage CONTEXTS for further
investigation of the POI subgraphs which they produce by
matching general attack patterns with PGs.

AIQL [77] and SAQL [78] propose domain-specific
query languages to detect known attack steps in PGs,
which is similar to our query generation mechanism but
with a different goal. Some provenance-based solutions
also leverage IDS rules like CONTEXTS does, but for
different reasons, e.g., continuously monitoring the PG for
matching attacks or scoring alerts [4], [79]. In summary, as
those solutions mostly focus on detection, their results may
serve as an input (POI) for CONTEXTS to perform further
investigation. Moreover, unlike those works, CONTEXTS
integrates multiple sources (e.g., IDS rules and CVEs) and
may cover out-of-order attack steps.

6. Conclusion

We have presented CONTEXTS, a solution that leveraged
external information about the POI to identify relevant PG
nodes/edges and reduce the scope of attack investigation.
We described the methodology and implementation to
extract alert context information from external data sources,
map them to the PG to generate waypoints, and correlate
those waypoints and the POI to obtain the output subgraph.
We evaluated CONTEXTS both as a standalone solution
and as a pre-processor of other pruning solutions, and our
results demonstrated its effectiveness in both cases. Finally,
our user study results confirmed its real-world applicability.
Limitations and Extensions. First, we have focused
on using Falco [42] for detection, SPADE [47] for PG
generation, and Falco rules and CVEs as the main sources of
external information in our implementation. Our approach
can potentially be extended through integration with (i)
other IDSes with the initial effort of adapting to their
reported alerts and detection rules, (ii) other PG generation
tools by rewriting queries based on their PG formats, (iii)
other sources of external information (e.g., [32], [34], [35])
through developing new extraction scripts. Such extensions
can also expand the scope of attacks which CONTEXTS
can handle, e.g., in-memory object attacks (which are not
supported by the current PG capturing tool used by CON-
TEXTS). Second, although we have focused on kernel-level
CVEs, our approach can potentially be extended to handle
APTs. For instance, CONTEXTS can generate waypoints for
APTs based on external information extracted from data
sources like the MITRE ATT&CK framework [80] and the
CSKG [36], [37], [38] (which allows linking each MITRE
technique to related CVEs and their details). Third, the
extraction of alert context information is currently based on
customized scripts, and applying natural language process-
ing (NLP) techniques for this purpose is an interesting future
direction. Fourth, while CONTEXTS is designed for assisting
human analysts in forensics investigations, addressing more
dynamic applications such as real-time attack response
is a potential future direction, which would require the
capability of incremental knowledge base construction and
maintenance, and improving the efficiency of provenance
graph collection and processing techniques. Fifth, while
CONTEXTS shows superior performance when static WPs
are available, improving its performance without static WPs
is another future direction. Sixth, while employing external
information is the key strength of CONTEXTS, it also means
a unique reliance on the quality and timeliness of such
information. Finally, while the waypoint-pruning step of
CONTEXTS (Section 3.2) can eliminate most unrelated-to-
POI waypoints, and we have not encountered a case where
multiple CVE matching cause FPs, real deployments may
produce significantly larger PGs to increase that chance.

Acknowledgment

We thank the anonymous shepherd and reviewers for
their valuable comments. This work was supported by the

Natural Sciences and Engineering Research Council of
Canada and Ericsson Canada under the Industrial Research
Chair in SDN/NFV Security and the Discovery Grant
N01035, and by the Canada Foundation for Innovation
under JELF Project 3859.

References

[1] “Strace.” https://linux.die.net/man/1/strace, 2022.

[2] “Sysdig.” https://sysdig.com/, 2023.

[3] S. T. King and P. M. Chen, “Backtracking Intrusions.” in ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[4] W. U. Hassan, A. Bates, and D. Marino, “Tactical Provenance
Analysis for Endpoint Detection and Response Systems.” in IEEE
Symposium on Security and Privacy (S&P), 2020.

[5] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee,
J. Patel, S. Jha, Y. Kwon, D. Xu, and X. Zhang, “Trace: Enterprise-
wide Provenance Tracking for Real-time APT Detection.” IEEE
Transactions on Information Forensics and Security (TIFS), vol. 16,
pp. 4363–4376, 2021.

[6] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang, “PROGRAPHER: An
Anomaly Detection System based on Provenance Graph Embedding.”
in USENIX Security Symposium, 2023.

[7] Z. Li, Q. A. Chen, R. Yang, Y. Chen, and W. Ruan, “Threat
Detection and Investigation with System-level Provenance Graphs:
A Survey.” Computers & Security, vol. 106, p. 102282, 2021.

[8] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning Attack Behavior with Kernel Audit Records for
Cyber Threat Hunting.” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019.

[9] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “Back-Propagating System Dependency Impact for
Attack Investigation.” in USENIX Security Symposium, 2022.

[10] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“NoDoze: Combatting Threat Alert Fatigue with Automated
Provenance Triage.” in Network and Distributed Systems Security
Symposium (NDSS), 2019.

[11] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma,
X. Zhang, D. Xu, S. Jha, G. Ciocarlie et al., “MCI: Modeling-based
Causality Inference in Audit Logging for Attack Investigation.” in
Network and Distributed Systems Security Symposium (NDSS), 2018.

[12] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a Timely Causality Analysis for Enterprise Security.” in
Network and Distributed Systems Security Symposium (NDSS), 2018.

[13] A. Goyal, G. Wang, and A. Bates, “R-CAID: Embedding Root
Cause Analysis within Provenance-based Intrusion Detection.” in
IEEE Symposium on Security and Privacy (S&P), 2024.

[14] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun, T. Pasquier, and
X. Han, “KAIROS: Practical Intrusion Detection and Investigation
Using Whole-system Provenance,” in IEEE Symposium on Security
and Privacy (S&P), 2024, pp. 3533–3551.

[15] M. U. Rehman, H. Ahmadi, and W. U. Hassan, “FLASH: A
Comprehensive Approach to Intrusion Detection via Provenance
Graph Representation Learning.” in IEEE Symposium on Security
and Privacy (S&P), 2024, pp. 139–139.

[16] P. Gao, F. Shao, X. Liu, X. Xiao, Z. Qin, F. Xu, P. Mittal, S. R.
Kulkarni, and D. Song, “Enabling Efficient Cyber Threat Hunting
with Cyber Threat Intelligence.” in IEEE International Conference
on Data Engineering (ICDE), 2021, pp. 193–204.

[17] E. Altinisik, F. Deniz, and H. T. Sencar, “ProvG-Searcher: A
Graph Representation Learning Approach for Efficient Provenance
Graph Search.” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023.

[18] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Extractor:
Extracting Attack Behavior from Threat Reports.” in IEEE European
Symposium on Security and Privacy (EuroS&P), 2021.

[19] J. Ying, T. Zhu, W. Cheng, Q. Yuan, M. Ma, C. Xiong, T. Chen,
M. Lv, and Y. Chen, “SPARSE: Semantic Tracking and Path
Analysis for Attack Investigation in Real-time.” arXiv preprint
arXiv:2405.02629, 2024.

[20] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “ATLAS: A Sequence-based Learning Approach for
Attack Investigation.” in USENIX Security Symposium, 2021.

[21] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Chen, W. Cheng, C. A. Gunter et al., “You Are What You
Do: Hunting Stealthy Malware via Data Provenance Analysis.” in
Network and Distributed Systems Security Symposium (NDSS), 2020.

[22] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High Fidelity Data Reduction for Big Data Security
Dependency Analyses.” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016, pp. 504–516.

[23] X. Yang, H. Liu, Z. Wang, and P. Gao, “Zebra: Deeply Integrating
System-level Provenance Search and Tracking for Efficient Attack
Investigation.” arXiv preprint arXiv:2211.05403, 2022.

[24] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “NodeMerge: Template Based Efficient Data
Reduction for Big-data Causality Analysis.” in ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2018, pp. 1324–1337.

[25] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan, “SoK: History is a Vast Early Warning
System: Auditing the Provenance of System Intrusions.” in IEEE
Symposium on Security and Privacy (S&P), 2023, pp. 2620–2638.

[26] M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “SHARD: Fine-
Grained Kernel Specialization with Context-Aware Hardening.” in
USENIX Security Symposium, 2021, pp. 2435–2452.

[27] H. Kermabon-Bobinnec, Y. Jarraya, L. Wang, S. Majumdar, and
M. Pourzandi, “Phoenix: Surviving Unpatched Vulnerabilities via
Accurate and Efficient Filtering of Syscall Sequences.” in Network
and Distributed Systems Security Symposium (NDSS), 2024.

[28] NIST, “CVE-2022-0847 Detail.” https://nvd.nist.gov/vuln/detail/C
VE-2022-0847.

[29] CVEDetails, “CVE-2022-0847 detail.” https://www.cvedetails.com/c
ve/CVE-2022-0847/.

[30] J. Avery, “CVE-2022-0847 (Dirty Pipe): Linux Local Privilege Es-
calation,” https://sysdig.com/blog/cve-2022-0847-dirty-pipe-sysdig.

[31] Sysdig, “Falco rules supported fields.” https://falco.org/docs/referen
ce/rules/supported-fields/.

[32] SigmaHQ, “Sigma Rules.” https://sigmahq.io/docs/basics/rules.html.

[33] MITRE, “Common Vulnerabilities and Exposures (CVE).”
https://cve.mitre.org.

[34] ——, “Common Weakness Enumeration (CWE).” [Online].
Available: http://cwe.mitre.org

[35] ——, “Common Attack Pattern Enumeration and Classification
(CAPEC).” http://capec.mitre.org.

[36] L. F. Sikos, “Cybersecurity Knowledge Graphs.” Knowledge and
Information Systems, vol. 65, no. 9, pp. 3511–3531, 2023.

[37] K. Kurniawan, A. Ekelhart, and E. Kiesling, “An ATT&CK-KG for
Linking Cybersecurity Attacks to Adversary Tactics and Techniques.”
in International Semantic Web Conference (ISWC), 2021.

[38] E. Kiesling, A. Ekelhart, K. Kurniawan, and F. Ekaputra,
“The SEPSES Knowledge Graph: an Integrated Resource for
Cybersecurity.” in International Semantic Web Conference, 2019.

[39] CVEDetails, “CWE-665 - Improper Initialization.” [Online].
Available: https://www.cvedetails.com/cwe-details/665/Improper-Ini
tialization.html

[40] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime Provenance-Based Detector for Advanced Persistent
Threats.” in Network and Distributed Systems Security Symposium
(NDSS), 2020.

[41] T. P. G. D. Group, “PostgreSQL: The World’s Most Advanced Open
Source Relational Database.” https://www.postgresql.org/.

[42] Sysdig, “Falco: Detect Security Threats in Real Time.”
https://falco.org/.

[43] National Institute of Standards and Technology (NIST), “National
Vulnerability Database (NVD),” https://nvd.nist.gov/, 2024.

[44] “spaCy: Industrial-strength Natural Language Processing in Python.”
2020.

[45] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer,
and J. Bacon, “Practical Whole-system Provenance Capture.” in
Symposium on Cloud Computing (SoCC), 2017.

[46] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi:
Collecting High-fidelity Whole-system Provenance.” in Annual
Computer Security Applications Conference (ACSAC), 2012.

[47] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing
in Distributed Environments.” in ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed
Processing, 2012.

[48] Grubb, Steve, “Linux Auditd.” https://linux.die.net/man/8/auditd.

[49] Neo4j, “Neo4j Graph Platform.” https://neo4j.com/.

[50] Gehani, Ashish, “Audit provenance,” https://github.com/ashish-geh
ani/SPADE/wiki/Audit-provenance.

[51] Neo4j, “Cypher Query Language.” https://neo4j.com/docs/cypher-m
anual/current/introduction/.

[52] ——, “Awesome Procedures On Cypher (APOC),” https://neo4j.co
m/labs/apoc/4.1/overview/apoc.path/apoc.path.expandConfig/.

[53] D. Eppstein, “Finding the K Shortest Paths.” Journal on Computing,
vol. 28, no. 2, pp. 652–673, 1998.

[54] The Linux Documentation Project (TLDP), “Program Library
”How To”: Shared Libraries,” 2024. [Online]. Available: https:
//tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

[55] Neo4j, “Yen’s Shortest Path Algorithm.” https://neo4j.com/docs/gra
ph-data-science/current/algorithms/yens/.

[56] ——, “The Neo4j Graph Data Science Library.” [Online]. Available:
https://neo4j.com/docs/graph-data-science/current/

[57] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection
using Sequences of System Calls.” Journal of Computer Security,
vol. 6, no. 3, pp. 151–180, 1998.

[58] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer, “Exploiting
Execution Context for the Detection of Anomalous System Calls.”
in Recent Advances in Intrusion Detection (RAID), 2007.

[59] The Kernel Development Community, “Seccomp BPF.” 2022.
[Online]. Available: https://www.kernel.org/doc/html/v5.10/userspac
e-api/seccomp filter.html

[60] W. Blair, F. Araujo, T. Taylor, and J. Jang, “Automated Synthesis of
Effect Graph Policies for Microservice-Aware Stateful System Call
Specialization.” in IEEE Symposium on Security and Privacy (S&P),
2023, pp. 64–64.

[61] J. Byrnes, T. Hoang, N. N. Mehta, and Y. Cheng, “A Modern
Implementation of System Call Sequence-based Host-based Intrusion
Detection Systems.” in IEEE TPS-ISA, 2020, pp. 218–225.

[62] Y. Jeon, J. Rhee, C. H. Kim, Z. Li, M. Payer, B. Lee, and Z. Wu,
“PoLPer: Process-aware Restriction of Over-privileged Setuid
Calls in Legacy Applications.” in ACM Conference on Data and
Application Security and Privacy (CODASPY), 2019.

[63] A. Jones and S. Li, “Temporal Signatures for Intrusion Detection.”
in Annual Computer Security Applications Conference (ACSAC),
2001, pp. 252–261.

[64] W. Lee, S. J. Stolfo, and K. W. Mok, “A Data Mining Framework
for Building Intrusion Detection Models.” in IEEE Symposium on
Security and Privacy (S&P), 1999, pp. 120–132.

[65] Y. Yamamoto and S. Yamaguchi, “Defense Mechanism to Generate
IPS Rules from Honeypot Logs and Its Application to Log4Shell
Attack and Its Variants.” Electronics, vol. 12, no. 14, p. 3177, 2023.

[66] C. Kreibich and J. Crowcroft, “Honeycomb: Creating Intrusion
Detection Signatures using Honeypots.” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 1, p. 51–56, 2004.

[67] S. Chierici, “CVE-2022-0492: Privilege Escalation Vulnerability
Causing Container Escape.” https://sysdig.com/blog/detecting-mitig
ating-cve-2022-0492-sysdig.

[68] S. Mohammadi, H. Kermabon-Bobinnec, A. Tabiban,
L. Wang, T. Navarro Múnera, and Y. Jarraya, “A Dataset
of Kernel Exploits Represented as Provenance Graphs,”
https://doi.org/10.5281/zenodo.15200285.

[69] Torrey Jacob, “Transparent Computing Engagement 5 Data Release,”
https://github.com/darpa-i2o/Transparent-Computing, 2020.

[70] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Crimson
Unicorn’s Github Repo,” https://github.com/crimson-unicorn, 2024.

[71] Verton Robin, “CVE-2016-5195 (DirtyCoW): Local Root PoC.”
https://gist.github.com/rverton/e9d4ff65d703a9084e85fa9df083c679.

[72] Ahmed Alexis, “CVE-2022-0847 (Dirty Pipe): Exploits.” ht tps:
//github.com/AlexisAhmed/CVE-2022-0847-DirtyPipe-Exploits.

[73] Datadog, “CVE-2023-0386: OverlayFS.” https://github.com/DataD
og/security-labs-pocs/tree/main/proof-of-concept-exploits/overlayf
s-cve-2023-0386.

[74] HashiCorp, “Vagrant Boxes.” https://app.vagrantup.com/boxes.

[75] A. Assila, H. Ezzedine et al., “Standardized Usability Questionnaires:
Features and Quality Focus.” Electronic Journal of Computer Science
and Information Technology, vol. 6, no. 1, 2016.

[76] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “DeepHunter: A Coverage-guided Fuzz
Testing Framework for Deep Neural Networks.” in ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019,
pp. 146–157.

[77] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling Efficient Attack Investigation from System Monitoring
Data.” in USENIX Annual Technical Conference (USENIX ATC),
2018.

[78] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A Stream-based Query System
for Real-Time Abnormal System Behavior Detection.” in USENIX
Security Symposium, 2018.

[79] K. Kurniawan, A. Ekelhart, E. Kiesling, G. Quirchmayr, and A. M.
Tjoa, “KRYSTAL: Knowledge Graph-based Framework for Tactical
ttack Discovery in Audit Data.” Computers & Security, vol. 121, p.
102828, 2022.

[80] MITRE, “MITRE ATT&CK Framework,” https://attack.mitre.org/.

[81] NIST, “NIST CVE Database.” https://nvd.nist.gov/vuln.

[82] MITRE, “MITRE CVE Database,” https://cve.mitre.org.

Appendix A.
Algorithms
K-Shortest Paths. Algorithm 1 details the K-Shortest Paths
(KPath) approach employed to connect different informative
points, as described in Section 3.3. Similar to some existing
solutions [9], [22], this approach merges all parallel edges
between each pair of nodes (line 2), as their presence
can lead to repetitive node sets even when the value
of K increases. After identifying the shortest paths, the

Algorithm 1 K-Shortest Paths Approach

Inputs:
G← Provenance graph
IP-Set← {POI,WP1, . . . ,WPn} // The set of informative points

Output:
G′′: Output Subgraph // G′′ = G′′-Nodes ∪ G′′-Edges

1: function K-SHORTEST PATHS(IP-Set,K)
2: g′ ← Merge-Parallel-Edges(G)
3: G′′-Nodes ← {}
4: G′′-Edges ← {}
5: for all (IPti, IPtj) in (IP-Set × IP-Set), i ̸= j do
6: Pi ← ProcessNodes(IPti)
7: Pj ← ProcessNodes(IPtj) //

If an IP t does not include a process node, this function returns the
process that is directly connected to it.

8: if (Pi.time−Pj .time = min(|P ′
i .time−P ′

j .time|), ∀P ′
i ∈

IPti, ∀P ′
j ∈ IPtj) then

9: Paths ← KShortest(g′, Pi, Pj , K)
10: G′′-Nodes ←G′′-Nodes

⋃︁
Nodes(Paths)

11: G′′-Edges ← G′′-Edges
⋃︁

Unmerge
(︁
Edges(Paths)

)︁
//

Revisiting the parallel edges corresponding to each edge of Paths.
12: end if
13: end for
14: end function

original parallel edges are revisited for further investigation
(line 11), thereby avoiding any loss of information.
Path-Guided Vicinity. Algorithm 2 details the Path-Guided
Vicinity (PthVic) approach discussed in Section 3.3. The
approach initializes the output graph with N-hop vicinity of
informative points and the K-Shortest Paths between them
(lines 2–4). Then, it finds the nodes that are both within an
N-hop vicinity and on shortest paths (lines 5–7). These are
expanded with N ′ additional hops (using Vic(node,N ′) de-
fined in Equation 1), and added to the output graph (line 8).

Algorithm 2 Path-Guided Vicinity Approach

Inputs and Output are as defined in Algorithm 1.
1: function PATH-GUIDED VICINITY(IP-Set K,N,N ′)
2: G1 ←

⋃︁
N -hop(IPt), ∀IPt ∈ IP-Set // Equation 1

3: G2 ← K-SHORTEST PATHS(IP-Set, K) // Algorithm 1
4: G′′ ← G1

⋃︁
G2

5: NVic-nodes ← Nodes(G1)
6: Path-nodes ← Nodes(G2)
7: for all node in NVic-nodes

⋂︁
Path-nodes do

8: G′′ ← G′′ ⋃︁ Vic(node,N ′) // Equation 1
9: end for

10: end function

Vicinity of Static and Dynamic WPs. Algorithm 3
details the Vicinity of Static and Dynamic WPs (StatDyn)
approach, as described in Section 3.3. The approach begins
by retrieving the process nodes in informative points and
their immediate parent and child processes, i.e., using the
Pid and PPid properties in each process node (lines 3–5). It
continues by iteratively acquiring all parents of parent nodes
(lines 6–9) and all children of child nodes (lines 10–13)
until no further parent or child can be found. The output
is the combination of the PthVic result (line 15) and the
vicinity of the obtained dynamic WPs (lines 16, 17).

Appendix B.
Overview of the Exploited CVEs

Table 5 shows an overview of the real attacks
implemented for testing CONTEXTS.

Algorithm 3 Vicinity of Static and Dynamic WPs Approach

Inputs and Output are as defined in Algorithm 1.
1: function STAT-DYN-VICINITY(IP-Set, K,N,N ′)
2: Parent-Set ← {}, Child-Set ← {}
3: IPt-Processes ←

⋃︁
ProcessNodes(IPt), ∀IPt ∈ IP-Set

4: Temp-Parent-Set ← GET-PARENTS(IPt-Processes)
5: Temp-Child-Set ← GET-CHILDREN(IPt-Processes) //

P is C’s parent iff C.PPid= P.Pid.
6: while Temp-Parent-Set ̸= {} do // Retrieving Ancestors
7: Parent-Set ← Parent-Set

⋃︁
Temp-Parent-Set

8: Temp-Parent-Set ← GET-PARENTS(Temp-Parent-Set)
9: end while

10: while Temp-Child-Set ̸= {} do // Retrieving Descendants
11: Child-Set ← Child-Set

⋃︁
Temp-Child-Set

12: Temp-Child-Set ← GET-CHILDREN(Temp-Child-Set)
13: end while
14: Dynamic-WPs ← Child-Set

⋃︁
Parent-Set

15: G′′ ← PATH-GUIDED VICINITY(IP-Set, K,N,N ′) // Algorithm 2
16: for all node in Dynamic-WPs do
17: G′′ ← G′′ ⋃︁ Vic(node,N ′) // Equation 1
18: end for
19: end function

Appendix C.
Exploit Code Reference Subgraph Extraction

To extract the reference subgraphs mentioned in
Section 4.1, these steps are followed: (1) We apply our
prior knowledge of the directory where the exploit code
is stored to generate queries for identifying the process
nodes related to the exploit code by obtaining the ones
that have the same working directory (cwd) as the exploit
code’s and iteratively expanding them with all their progeny
processes. (2) We manually validate the obtained processes
by comparing them with the exploit code. (3) We execute
queries to obtain the interactions between exploit-related
processes, where we also consider the specified time
window constraint (i.e., the creation time of the edges
must be after the initialization of the exploit). (4) To
validate the extracted reference subgraph, we compare its
system calls with those recorded by tracing tools, such as
Strace [1] or Sysdig [2], during the exploit code execution.
The comparison shows a near-perfect match between the
reference subgraph and the trace of the exploit code.

Appendix D.
User Study Statements

Table 6 lists the full statements used in our user study,
as well as the average agreement level of participants.

TABLE 6: User Study Statements. To quantify the results, we convert participants’ agreement level to scores between one
and five (score five represents Strongly agree).
Category Statement Code Score

No CONTEXTS
Given the Provenance Graph and the POI, it is infeasible to find the root cause events related to the attack. Q1 4.22
Knowing the attack story, it is very time-consuming to find the root cause in the provenance graph. Q2 4.28

K-Shortest Paths Having the annotated suspicious activities (static WPs) and the paths connecting them made understanding the attack story easier. Q3 4.33
Some of the malicious nodes are missing in the provided result. Q4 4.61

Path-guided Vicinity This approach reduces the number of irrelevant nodes (w.r.t. K-Shortest Paths). Q5 4.78
Vicinity of Static &
Dynamic WPs

The graph generated through the ancestors of suspicious activities captures the great majority of malicious nodes w.r.t. the previous
approaches. Q6 4.55

Conditional
Expansion of WPs

Using conditional expansion drastically reduces the irrelevant nodes. Q7 4.95
The result is very close to the ground truth. Q8 4.56

RCA
with CONTEXTS

Investigating the CONTEXTS result for identifying the sequence of root cause activities is much faster and easier. Q9 4.44
The provided result is sufficient for identifying the sequence of malicious system calls, eliminating the need to investigate other parts
of the provenance graph. Q10 4.44

TABLE 5: Overview of the exploited CVEs in our dataset
preparation, and the corresponding experiment setup. ↑ and
↓ denote that the kernel must be upgraded or downgraded
from the default version, respectively. Note (1)/(2) indicate
different exploitations of the same CVE.

CVE Description [81], [82] OS version Kernel
Box version version

2021-3156 Heap-based buffer
overflow in the sudo utility

bento/ubuntu-20.04
v202206.03.0

v5.4.0-
110-generic

2022-0847(1)
setuid bit

Incorrect
handling of Unix pipes

bento/ubuntu-20.04
v202309.09.0

v5.8.0-
23-generic ↑

2022-0847(2)
/etc/passwd

Variant of DirtyPipe directly
modifying /etc/passwd

bento/ubuntu-20.04
v202309.09.0

v5.8.0-
23-generic ↑

2021-4034 Local privilege
escalation in the pkexec utility

bento/ubuntu-20.04
v202105.25.0

v5.4.0-
73-generic

2024-48990 Privilege escalation
in the needrestart utility

generic/ubuntu-22.04
v4.0.0

5.15.0-
30-generic

2021-44228
& 2022-0847

Chaining of Log4Shell
(RCE) followed by DirtyPipe

(privilege escalation)

bento/ubuntu-20.04
v202309.09.0

v5.8.0-23-
generic ↑

2023-32233 Anonymous
sets mishandle in nftables

generic/ubuntu-23.04
v4.3.12

v6.2.0-
20-generic ↓

2016-6516 Double fetch vulnerability
in the ioctl system call

bento/ubuntu-16.04
v201801.02.0

v4.6.1-
generic ↑

2021-22555(1)
regular

Heap memory
corruption in netfilter/x tables

ubuntu/focal64
v20221003.0.0

5.8.0-
48-generic ↑

2023-0386 Unauthorized execution of
setuid bit files in OverlayFS

generic/ubuntu-22.04
v4.0.0

v5.15.0-
30-generic

2016-5195 Race condition
during Copy-on-Write

bento/ubuntu-16.04
v201801.02.0

v4.4.0-
21-generic ↓

2023-32629 Local privilege escalation
in Ubuntu’s OverlayFS

bento/ubuntu-22.10
202303.13.0

v5.19.0-
35-generic

2023-22809 Privilege escalation
in the sudoedit utility

bento/ubuntu-22.04
v4.2.0

5.15.0-
92-generic

2023-31248 Use-after-free local
privilege escalation in nftables

generic/ubuntu-23.04
v4.3.0

v6.20.0-
20-generic ↓

2021-3490 Out-of-bounds reads
and writes in eBPF ALU32

generic/ubuntu-20.04
v3.5.0

v5.8.0-
48-generic ↑

2021-22555(2)
pipe

Similar to above but
exploit using pipe primitives

ubuntu/focal64
v20221003.0.0

5.8.0-
48-generic ↑

2022-34918 Privilege escalation due
to buffer overflow in netfilter

ubuntu/jammy64
v20211020.0.0

v5.15.0-
39-generic ↓

2022-2639 Out-of-bounds
write access in Open vSwitch

generic/ubuntu-20.04
v4.3.0

v5.13.0-
37-generic ↑

2021-4154 Use-after-free in cgroups using
the fsconfig system call

generic/ubuntu-20.04
v4.3.0

v5.8.0-
48-generic ↑

2022-2588 Use-after-free in cls route fil-
ter, exploited using DirtyCred

ubuntu/focal64
v20221202.0.1

v5.0.10-
generic ↓

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper introduces CONTEXTS, a novel approach
to cyber attack investigation that leverages a rich set of
auxiliary information to pre-process provenance graphs
and enhance investigation efforts. These external contexts
(e.g., context given in the alerting IDS rules, man-pages
around relevant system calls, etc.) provide more relevant
information on identified attacks, allowing CONTEXTS to
significantly reduce the size of provenance graph.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance

1) This paper creates a new tool to enable future science,
by introducing a new methodology that allows existing
approaches to be augmented with external information
to assist with pruning efforts. This provides an
opportunity for future work to integrate even richer
sources of information to help with pruning.

2) The paper provides a valuable step forward in an
established field, by showing that accurate attack inves-
tigation requires more than just localized information
collected from standard audit tools. The results show
that by doing so it is possible to significantly reduce
false positives, which has been a longstanding problem.

E.4. Noteworthy Concerns

1) The idea of leveraging CVE descriptions is promising,
but its execution could be improved by analyzing the
actual patched code for each CVE and extracting the
key features from the patch.

2) CONTEXTS depends on accurate, up-to-date external
information sources, which makes it vulnerable to
issues with data quality or coverage. The paper does
not explain if this is a limitation shared by other
pruning approaches, or provide discussion that would
help users pick the right tool per their needs.

