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Abstract—The dynamicity and complexity of clouds highlight
the importance of automated root cause analysis solutions for
explaining what might have caused a security incident. Most
existing works focus on either locating malfunctioning clouds
components, e.g., switches, or tracing changes at lower abstraction
levels, e.g., system calls. On the other hand, a management-level
solution can provide a big picture about the root cause in a more
scalable manner. In this paper, we propose DOMINOCATCHER, a
novel provenance-based solution for explaining the root cause of
security incidents in terms of management operations in clouds.
Specifically, we first define our provenance model to capture the
interdependencies between cloud management operations, virtual
resources and inputs. Based on this model, we design a framework
to intercept cloud management operations and to extract and
prune provenance metadata. We implement DOMINOCATCHER
on OpenStack platform as an attached middleware and validate its
effectiveness using security incidents based on real-world attacks.
We also evaluate the performance through experiments on our
testbed, and the results demonstrate that DOMINOCATCHER
incurs insignificant overhead and is scalable for clouds.

I. INTRODUCTION

Cloud computing has been widely adopted to provide users
the ability to self-provision resources while optimally shar-
ing the underlying physical infrastructure. However, the self-
service and multi-tenancy nature of clouds also leads to a
higher complexity and greater chances of misconfigurations [5],
[17], [34], which may complicate many security issues in
clouds. In particular, explaining what may have caused a
security incident, i.e., the root cause analysis, becomes far
more challenging [6]. A manual approach to root cause analysis
is typically impractical considering the sheer size of clouds,
and automated solutions become essential for understanding,
debugging, and preventing security attacks exploiting either
vulnerabilities or misconfigurations in clouds.

There exist root cause analysis solutions [6], [23], [28] for
identifying failed components leading to security alarms in
clouds, although they do not explicitly pinpoint the configu-
ration changes causing the failures. Other existing solutions
focus on explaining system behaviours through provenance
analysis, i.e., tracing when and how data objects are created

and transformed. However, since most existing provenance
solutions work at a low abstraction level, e.g., system calls [11],
[25], [26], [33], they become insufficient in the context of
clouds, as such solutions would generate a prohibitive amount
of provenance metadata while not providing a big picture
about the root cause. In the following, we present a motivating
example to further highlight the need for provenance analysis
in clouds and the limitations of existing solutions.

Motivating Example. Figure 1 depicts the challenge faced by
an administrator after the detection of a data leakage from
VM A to VM Mal in the cloud virtual infrastructure (shown
at the top of the figure), i.e., he/she would have to inspect a
large amount of log entries from various services of OpenStack
(shown in the middle of the figure) in an attempt to understand
the attack scenario (shown at the bottom).

• An attacker from TenantB creates a port (PortMal) on a
router belonging to TenantA by exploiting vulnerability
OSSA-2014-0081.

• He/She then creates a VM attached to that port while
exploiting another vulnerability (OSSA-2015-0182) to
bypass anti-spoofing rules for this VM in order to launch
DHCP spoofing attack to impersonate a DNS server.

• He/She now can intercept TanantA’s traffic from VM A
destined to VM B through Subnet1, Router1 and Subnet2.

Pinpointing such attack steps and correlating them based on
their interdependencies can be a daunting task if done manually,
e.g., at first glance there may not be any apparent link between
the VM A creation and the VM Mal attachment to PortMal. On
the other hand, traditional provenance-based solutions do not
directly provide such a big picture, as they typically focus on
low-level details (e.g., system calls) of individual components
(e.g., an OS). Additionally, interpreting and correlating such
low-level results in a cloud would be prohibitive considering
its sheer scale.

1https://security.openstack.org/ossa/OSSA-2014-008
2https://security.openstack.org/ossa/OSSA-2015-018



Fig. 1: An example of data leakage in clouds (top), logs of
various OpenStack services (middle), and the challenge of
identifying problematic management operations (bottom).

To address those challenges, we propose in this paper
DOMINOCATCHER, a scalable provenance-based solution for
forensic analysis in clouds. Our key idea is to lift the prove-
nance analyses to the cloud management-level, which enables
tracing cloud infrastructure configuration changes and iden-
tifying the ones causing attacks. Specifically, we first design
a provenance model to encode the interdependencies between
management operations, virtual resources and inputs in clouds.
We also propose a middleware-based framework to capture
provenance metadata from different cloud services and con-
struct the provenance graph according to our model to support
forensic analysis. Finally, we implement and experimentally
evaluate a prototype of DOMINOCATCHER on a real OpenStack
cloud testbed.

In summary, our main contributions are as follows.

• To the best of our knowledge, this is the first provenance-
based solution focusing on management operations of
cloud infrastructures. Compared to existing provenance-
based solutions, our provenance model is defined at a
higher abstraction level, and therefore, can provide a big
picture about cloud configuration changes with increased
interpretability that facilitates subsequent analyses.

• In lifting provenance analysis to management-level, we
propose several novel mechanisms as follows. First, our
middleware-based solution can allow for incremental
provenance graph construction, while requiring less in-
strumentation compared to existing solutions. Moreover,
our user-oriented pruning techniques can enable different
cloud tenants to customize their analysis of provenance
data and to facilitate their different needs in terms of foren-
sic analyses, security assumptions and user preferences.

• Our evaluation results show that DOMINOCATCHER can
provide a scalable tool for diagnosing the root cause of se-

curity incidents in cloud infrastructures with insignificant
performance and storage overhead.

The remainder of this paper is organized as follows: Sec-
tion II defines our provenance model and Section III describes
our methodology. Section IV details our implementation and
Section V presents evaluation results. We review related work
in Section VI and conclude the paper in Section VII.

II. CLOUD MANAGEMENT PROVENANCE MODEL

We provide a threat model and some background on cloud
virtual infrastructures and management operations. We then
define our management-level provenance model.

A. Threat Model and Assumptions

Our in-scope threats include both external attackers who
exploit existing vulnerabilities in the cloud infrastructure man-
agement systems, and insiders, such as cloud users and tenant
administrators, who make the state of the cloud infrastructure
exploitable either through mistakes or by malicious intentions.
We limit our scope to attacks that involve some operations
directed through the cloud management interfaces (e.g., com-
mand line and dashboard). We assume the cloud infrastructure
management system, the provenance building mechanism and
the provenance storage are all protected with existing tech-
niques such as remote attestation [12], [29], hash-chain-based
provenance storage protection [8] or type enforcement [2].

Out-of-scope threats include attacks that either involve no
management operations or can completely bypass the cloud
management interfaces, attackers who can temper with (either
through attacks or by using insider privileges) the cloud infras-
tructure management system (e.g., breaching the integrity of the
API calls) or the provenance solution itself. Finally, although
our provenance results may subsequently lead to the discovery
of existing vulnerabilities or misconfigurations, our focus is not
on vulnerability analysis, intrusion detection, or configuration
verification, and our solution is expected to work in tandem
with those solutions.

B. Background

Figure 2 shows an example cloud virtual infrastructure, with
cloud tenants provisioning and managing their virtual resources
(e.g., VMs and virtual subnets3) through API management
interfaces (without loss of generality, our running example will
focus on virtual network-related security incidents).
Cloud Virtual Infrastructure. As shown in Figure 2, in
the cloud virtual infrastructure, routers interconnect differ-
ent subnets to route intra-tenant traffic (e.g., between Sub-
net1 and Subnet2), and they also route inter-tenant traffic
through external networks. A subnet (e.g., Subnet1) is as-
sociated with a CIDR (e.g., 10.0.0.0/24) and upon tenants’
Attach-Subnet-to-Router request, it can be attached to
a router through an interface, e.g., IF1. Once a tenant requests
for creating a VM, e.g., VM A, it is attached to a virtual port,
e.g., PortA. Ports can be created in subnets and each port is

3Different cloud platforms may use different terms for the same concept.



Fig. 2: Example of a cloud virtual infrastructure showing
the interdependencies between virtual resources introduced by
management operations.

subsequently allocated with an IP address chosen from that
subnet’s address range. Moreover, ports are attached with one
or several security groups, which are the placeholders of access
rules specifying the allowed ingress/egress traffic from/to VMs
of other groups. Once a tenant requests for attaching a VM to
a security group, the iptable of that VM is updated with the
VMs’ IP addresses from/to which traffic is allowed according
to the newly attached security group.

Interdependencies. From the above description about how API
calls may affect cloud infrastructures, we can see that there
may exist interdependencies between different cloud virtual
resources that are introduced by management operations. For
instance, the Attach-Subnet-to-Router management
operation introduces an interdependency between a router and
its attached subnets by adding the attached subnets’ addresses
to the router’s routing table, and the Add-Security-Group
management operation introduces an interdependency between
the VMs attached to different security groups. To capture such
interdependencies, we define our provenance model in the
following.

C. Management-Level Provenance Model

In general, provenance usually refers to a technique that
captures the information flow between sources and sinks [11].
In the context of cloud virtual infrastructures, we identify
as sinks the management operations (e.g., Create-VM and
Update-port) that lead to changing the configuration and
state of some virtual resources (e.g., virtual machines and
ports), which we identify as sources.

To represent our provenance model, we leverage W3C
PROV-DM [4]. According to this specification, the provenance
concept is generally visualized using a directed graph, namely
provenance graph, in which nodes are categorized into three
main types: entities, activities, and agents, where entities repre-
sent data objects, activities represent transformations on those
objects and agents represent software, persons or organizations
on whose behalf activities are requested. Relations are defined
between nodes to describe their interdependencies, e.g., an
entity WasGeneratedBy an activity, an activity Used an entity,
or an activity WasAssociatedWith an agent.

To define our provenance model based on PROV-DM, we
map the most common concepts in cloud virtual infrastructure
management to this specification. Specifically, a summary of
our provenance model is shown in Table I. Subtypes are added
to refine the classification of PROV-DM based on our needs. To
illustrate our model, Figure 3 shows an excerpt of the prove-
nance graph describing the management operations involved in
our motivating example, as detailed in the following.

Entities. As explained in Table I, entity vertices (shown as
ovals in Figure 3) represent states of cloud virtual infrastructure
resources, their configuration or inputs (e.g., a virtual router,
security group, VM, etc.). For instance, a state of a router can
be associated with the addresses of its connected networks,
while a VM state can be either running or down. We use
node versioning, which is the most common cycle removal
technique in the provenance literature [21], [25], [26], in order
to reduce the subsequent analyses overhead. Specifically, a new
node is created at each change occurrence of its corresponding
resource, representing a new version of the resource4. For
example, as it is shown in Figure 3, a new node representing
an updated state of Router1 (i.e., the node 〈Router1, Version1〉)
is created when it is attached to Subnet1, which essentially
represents the updated routing table. Each entity node is
assigned with a label describing its subtype (e.g., VM, Port,
etc.). Moreover, entity nodes consist of a set of attributes for
storing a unique ID assigned by the cloud to their resources,
nodes’ creation time, etc. Other attributes, such as attached
networks for virtual routers or running/stopped for VMs, may
also be assigned when needed.

Activities. Activity vertices (shown as rectangles in Figure 3)
represent management API calls made to either change the
state of resources (e.g., Start-VM) or to mange their lifecycle
(e.g., Create-VM). The management API calls can be made
either directly by tenants or as the result of another operation
request. For example, in OpenStack, once a tenant requests for
creating a VM in a network, his/her request is received by the
compute service, which subsequently makes another request
to the networking service for binding a port in the specified
network to the created VM. In such a case, we consider
those two API calls as separate activities. We assign each
activity node a label describing its corresponding operation
type, e.g., Create-VM. Moreover, each activity node has
several attributes, including a unique request ID assigned by
the cloud management system to its corresponding API call,
the time that the request has been issued, etc.

Agents. Agent vertices (shown as diamonds in Figure 3) corre-
spond to the identity of the tenant admins or users interacting
with management API interfaces to provision or manage their
resources. Agents are identified using the unique ID of tenants
or users.

4Although node versioning naturally causes an increase in the size of the
provenance graph, we will show that the size of our provenance graph is
sufficiently scalable in Section V.
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Fig. 3: The provenance graph describing the main management operations and virtual resources related to the attack in the
motivating example (some edges and nodes are omitted for the sake of readability).

TABLE I: Mapping of the common concepts in cloud virtual infrastructures to the PROV-DM Model.

Cloud Concept Description PROV Model Subtype
Cloud Tenant Groups of users owning an isolated set of virtual resources. Agent Tenant Admin, other tenants
Cloud User Customers of the cloud infrastructure belonging to a tenant with specific

privileges to provision cloud resources.
Agent Admin user of a tenant, other users.

Operation (lifecycle-related) Management API calls for deploying, deleting, or updating cloud virtual
resources.

Activity Create-VM, Update-Port-Device-
Owner, Update-VLAN-ID, etc

Operation (state-related) Management API calls for performing actions on virtual resources. Activity Start VM, Resize VM, Change VM
Password, etc.

Resource The states of a virtual infrastructure resource. For example, a VM is run-
ning/stopped/paused.

Entity VMs, virtual ports, virtual Subnets,
etc.

Resource Configuration The states of a virtual infrastructure configuration, e.g., configuration state of
the virtual hardware for VMs, network access rules, etc.

Entity Security groups, Flavors, etc.

Input for changing configurations The input data causing a change to the configuration state. Entity Security group rules, etc.

III. THE METHODOLOGY

We first provide an overview of our methodology, and then
detail the provenance construction and forensic analysis stages.

A. Overview
An overview of the DOMINOCATCHER framework is shown

in Figure 4. DOMINOCATCHER works in two main stages,
i.e., provenance construction (represented as solid line ar-
rows) and offline forensics analysis (dashed line arrows). First,
DOMINOCATCHER intercepts tenants’ management API calls
at runtime to incrementally construct the provenance graph.
During provenance construction, DOMINOCATCHER intercepts
and processes each API call to construct the corresponding
subgraph and then appends it to the rest of the provenance
graph in the database. Once a threat is detected, the investigator
can trigger the DOMINOCATCHER offline forensic analysis ca-
pabilities to perform an algorithmic pruning on the provenance
graph in order to narrow down the cause of the threat. We detail
those two stages in the following.
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Fig. 4: DOMINOCATCHER highlevel overview.
B. Provenance Construction

Provenance construction consists of two main steps: data
collection and graph generation.

Data Collection. Existing provenance-based solutions mostly
perform data collection through log processing, event inter-
ception mechanisms via Linux Security Modules (LSM) [20],
or code instrumentation in other platforms. Specifically, these
interception mechanisms trace the interdependencies between
data objects [7], [25], [26] or application functions and vari-
ables [32], [33]. However, code instrumentation would be too
expensive and impractical in cloud infrastructures considering
their sheer scale and complexity. On the other hand, standard
cloud infrastructure logs may lack sufficient details for identi-
fying the type of management operations and corresponding
resources required for provenance metadata (e.g., different
types of operations may appear to be identical in the logs [18]).

To address those limitations, we design our event intercep-
tion mechanism as a middleware [14], [30] to intercept the
API calls. This approach allows us to trace more detailed
information about configuration changes (than what is included
in the logs), while avoiding the expensive instrumentation
and decoupling the provenance system from the infrastructure
for more flexible deployment. The intercepted API calls are
processed by DOMINOCATCHER according to rules built based
on the cloud API design. These rules are used to parse the API
calls, identify the type of management operations, determine
the affected virtual resources and the user identity behind the
API request. More details on parsing the intercepted requests
and retrieving their parameters will be provided in Section IV.

Graph Generation. After data collection, DOMINOCATCHER
converts the extracted information into provenance metadata as
nodes and edges, and appends them to the provenance graph
stored in the database. Specifically, it first creates a new node
for each affected virtual resource and a node for the requested
operation. Next, it creates relations such as a WasGeneratedBy



edge from each resource node to the operation node, or a Used
edge from the operation node to each of the existing nodes
in the provenance graph that represents the latest version of an
affected resource, which is identified through its unique ID and
the previous versions’ timestamps.

For example, in Figure 3, DOMINOCATCHER creates a
WasGeneratedBy edge from the node 〈Router1, Version1〉 (rep-
resenting its state after Subnet1’s attachment), to Attach-Subnet-
to-Router and a Used edge from Attach-Subnet-to-Router to the
node 〈Router1, Version0〉, representing the previous state of
Router1. Furthermore, DOMINOCATCHER creates a WasAsso-
ciatedWith edge from the operation node (e.g., Create-Router)
to the node representing the cloud user/tenant requesting that
operation (e.g., TenantA).

C. Forensic Analysis

To explain what might have led to attacks in the cloud
virtual infrastructure, analysts could perform forensic analyses
on the provenance graph constructed by DOMINOCATCHER
prior to the time of threat detection. To this end, we can
leverage existing threat detection mechanisms for monitoring
the infrastructure and the deployed VMs. For instance, we
can rely on three main types of detection methods: VM-
level monitoring [3] (e.g., intrusion detection tools), cloud
virtual infrastructure policy compliance [24] and cross-layer
consistency verification tools [15].

In performing forensic analyses on the provenance graph
constructed by DOMINOCATCHER, analysts may face two chal-
lenges. First, the provenance graph may be too large for human
interpretation as it might include many benign or irrelevant
operations. Second, the multi-tenancy nature of clouds means
the analysts from different tenants may have vastly different
needs and preferences in terms of their objectives of forensic
analyses and security assumptions. To address those issues,
we propose two user-oriented pruning mechanisms to auto-
matically identify and remove benign or irrelevant information
from the provenance graph. The analysts could narrow down
the scope of their forensic analyses by triggering the pruning
process and selecting the proper pruning mechanisms based on
their needs.

Specifically, we propose two user-oriented pruning schemes
in the context of cloud virtual infrastructures, namely disjoint
subgraph pruning and context-based pruning (we can addition-
ally apply other pruning approaches, e.g., [7], [9], [10]).

Disjoint Subgraph Pruning. This pruning mechanism
basically finds and removes all nodes in the provenance graph
that are disconnected from the subgraph including the node
corresponding to the target resource (i.e., the resource on which
a threat is detected). Specifically, DOMINOCATCHER starts
from the last version of the target resource node, and follows
all paths of the type Resource1-(Used/WasGeneratedBy)-
ManagementOperation-(WasGeneratedBy/Used)-Resource2.
An example provenance graph with this pruning mechanism
applied is depicted in Figure 5. In the figure, starting from
the starred VMA node, we can find the Add-Security-Group
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Fig. 5: Example of pruning through finding the provenance
graph nodes disjointed from the target VM (VMA) and unre-
lated nodes according to the security incident context.

node, which used the previous version of VMA and generated
the new version of SecurityGroupA. We further follow the
operations affected VMA earlier in the provenance graph, which
leads us to the SubnetA node through the WasGeneratedBy
edge from the Create-VM node. We also find the Attach-
Subnet-to-Router node that used SubnetA and generated a
new version of Router1. Following this process, we can find
all the operations and resources that have affected the state
of the target resource, VMA, as well as the operations and
resources which are dependent on the changes previously
made to VMA. On the other hand, the absence of any path
between a group of nodes and the target resource implies the
lack of interdependencies and thus the former may be pruned.
For example, in Figure 5, having detected an attack on VMA,
an analyst may trigger this pruning mechanism to prune the
disjoint subgraph, shown inside the dashed contour in red,
e.g., SubnetC, Router2 and the operations affecting them.
Context-Based Pruning. This pruning mechanism removes
nodes that are not contextually dependent on the target resource
according to the analyst’s provided criteria. DOMINOCATCHER
traverses paths in the provenance graph while checking the
specified constraints to identify a subgraph of resources and
operations interdependent with the target virtual resource. For
example, a security incident reported by a network-based IDS
can lead the investigator to prune entity and activity nodes that
are related to virtual resources not directly connected to the
same virtual network as the victim resources. Figure 5 shows
an example of context-based pruning in the context of VMA
data leakage incident. In this example, DOMINOCATCHER
automatically identifies resources connected to VMA’s network
(SubnetA) through the provenance graph based on the prede-
fined operation types that potentially create or update network
connectivity between virtual resources (e.g., Create-VM and
Attach-Subnet-to-Router). To this end, it starts from



the last version of VMA entity node in the provenance graph
and traverses paths until it either reaches activity nodes of the
operation types not included in the predefined set or acting on
resources that are not reachable from VMA nodes through any
traversed path. For instance, DOMINOCATCHER keeps VMB
and its attached subnet, SubnetB, in the provenance graph as
they are reachable from VMA through Attach-Subnet-to-Router
and Create-VM nodes on a traversed path. On the other hand,
although VMX, connected to SubnetX through Create-VM node
(in the green contour), is attached to the same security group
as VMA’s via Add-Security-Group node, it is pruned in this
step, as there is no Attach-Subnet-to-Router node on any path
between the network of VMX and VMA.

The pruning mechanisms allow the analyst to perform a more
focused forensic analysis towards the identification of potential
root causes. The following demonstrates how an analyst may
pinpoint the management operations that lead to data leakage
from VMA in our motivating example.

• The analyst may first trigger the disjoint graph pruning
mechanism to retrieve the subgraph with nodes reachable
from the VMA nodes through some paths.

• Next, through the context-based pruning, he/she can re-
trieve all nodes corresponding to the resources that became
routable from VMA’s network before and after VMA’s
creation.

• Based on the pruned result (Figure 3), the analyst may
realize that VMA was created in a network that was
attached to a router, Router1, belonging to TenantA.

• Among the retrieved nodes, he/she can query to highlight
the nodes corresponding to the operations requested by
users of a tenant different from TenantA, and their affected
resources. He/She can see that a user of TenantB created
a port on the router attached to VMA’s network, and
later, that user updated the port’s device owner field
immediately after he/she created and attached a VM, VMB,
to that port.

• Seeing the creation of a port by a user on a different
tenant’s router, the analyst realizes about the existence of
an authorization failure. Furthermore, since the update of
the port’s device owner field was requested immediately
after its attachment to a created VM, it is likely that
OpenStack Neutron service treated it as a network-owned
port, and thus, assigned no anti-spoofing rules to the port.
Those lead the analyst to realize that there may exist vul-
nerabilities in Neutron which allow users to bypass proper
authorization check and anti-spoofing rules to access other
tenants’ networks.

IV. IMPLEMENTATION

We implement DOMINOCATCHER based on an OpenStack
cloud testbed. We choose OpenStack due to its popularity,
e.g., as a platform supporting Network Function Virtualization
(NFV) for telecommunication service providers [27]. However,
we note that only the data collection mechanism of our ap-
proach is platform-specific, and our modular and less invasive
design makes our approach readily adaptable to other platforms.

Fig. 6: DOMINOCATCHER architecture.

Figure 6 shows the architecture of DOMINOCATCHER. In
the following, we detail the implementation and integration of
our approach in OpenStack.
Integration into OpenStack. In the following, we explain
the integration of DOMINOCATCHER into OpenStack and the
preprocessing required for the data collection.

1) DOMINOCATCHER as an OpenStack WSGI middleware.
To collect provenance metadata from the REST API calls
made to endpoint services (e.g., Nova and Neutron), we
implement our framework as a Python WSGI middleware
similar to existing works [14], [30], and install it in the
filter chain to those services. Figure 7a depicts an excerpt
of Neutron API configuration and its filter chain into
which DOMINOCATCHER is inserted. This configuration
is stored in the api-paste.ini file for each service.

[composite:neutronapi_v2_0]

use = call:neutron.auth:pipeline_factory

noauth = cors http_proxy_to_wsgi request_id catch_errors extensions 

DominoCatcher neutronapiapp_v2_0

keystone = cors http_proxy_to_wsgi request_id catch_errors authtoken 

keystonecontext DominoCatcher extensions neutronapiapp_v2_0

(a)

REQUEST_METHOD: �PUT✁

openstack.request_id: �✂✄☎dt✁

HTTP_X_PROJECT_ID: �fb5s✁

HTTP_X_USER_ID: ✆ax1h✝

PATH_INFO: �✞v2.0/ports/f91398✁

wsgi.input: �✟�port✁✠ ✟�device_owner✁✠ �network:--✁✡✡✁

(b)
Fig. 7: (a) OpenStack Neutron API configuration integrat-
ing DOMINOCATCHER as a middleware. (b) Example of
Update-Port API call parameters.

2) Preprocessing for Information Extraction. Our approach
enables users to focus provenance analysis on a set of
operations and resources as well as OpenStack services
which are specified to be related to the analyses. For in-
stance, the users can focus on the management operations
that update network-related cloud configurations. This is
achieved through specifying parsing and operation typing
rules of the selected management operations to extract
the contextual information and to identify the type of the
requested operations at runtime. Figure 7b shows selected
fields of an example Update-Port API call. In this
example, the PATH-INFO is parsed to extract the updated



port. Also, the extracted fields of wsgi.input (the
request body content), METHOD and PATH-INFO of the
API call are matched against the typing rules to determine
that this request is issued to update port ‘f91398’ while
changing its device owner field.

At the end of the preprocessing stage, DOMINOCATCHER is
ready to intercept management API calls, extract the affected
virtual resources and identify the requested operations’ type.
Runtime Provenance Construction. At runtime, API Re-
quests/Responses Interceptor intercepts the parameters of man-
agement API calls and passes them to Requests Processor,
which identifies the affected resources and the type of the
requested operations. If it identifies a request triggering the cre-
ation of resources (e.g., Create-VM), it processes the API re-
sponse sent back from the endpoint services as well to retrieve
the created resource ID. Next, Provenance Builder updates the
provenance database implemented in Neo4j5 with the extracted
information. We use py2neo6 library in DOMINOCATCHER
middleware as an interface between the middleware python
script and Cypher language7 to interact with the database.
Offline Forensic Analysis Module. To facilitate the analyses
after the detection of a threat, the analyst selects and initializes
selected pruning mechanisms (detailed in Section III) through
DOMINOCATCHER command line interface. For instance, the
analyst can initiate the pruning script with the parameters
reported about the alert (e.g., time of the detection, the target
VM ID, etc.), security assumptions and a beginning time to
further limit the analyses on the constructed graph.

V. EVALUATION

In this section, we evaluate DOMINOCATCHER based on
three criteria: (1) Effectiveness in reconstructing the operations
sequences that led to the attack; (2) Runtime performance
overhead; (3) Storage overhead. We conduct our experiments
based on OpenStack Rocky8. Our cloud testbed includes one
controller node and up to 80 compute nodes, each with 8 CPUs
and 12 GB RAM running Ubuntu 16.04 server.

A. Effectiveness

To evaluate the effectiveness of our approach, we reproduce
in our testbed 8 attack scenarios that involve cloud virtual
infrastructure misconfigurations. Most of these attacks are
discussed in existing works [5], [15], [17], [30], [34]. Ta-
ble II summarizes these attack scenarios and the most relevant
operation types according to the results obtained after the
DOMINOCATCHER pruning process. In the following, we detail
how a cloud admin can benefit from DOMINOCATCHER for the
case of port scanning threat (other cases are omitted due to page
limitations).
Example. Consider a scenario where a user (UserA) receives
a port scanning alert on one of his/her running VMs, VMA,

5https://neo4j.com
6https://py2neo.org/v4
7https://neo4j.com/developer/cypher-query-language
8https://docs.openstack.org/rocky

which he/she previously connected to VMB’s network to use
the network service on VMB belonging to a trusted user,
UserB. Figure 8 shows the pruned provenance graph generated
by DOMINOCATCHER. For simplicity, we do not show the
attachment of VMB to SecurityGroupB and the rule allowing
traffic from this group to SecurityGroupA. The provenance
graph shows that VMA was created in SubnetA, and added to
SecurityGroupA before getting started. Moreover, SubnetA was
attached to Router1 through Attach-Subnet-to-Router
operation, and Router1 was connected to SubnetB, and in
SubnetB, UserMal created VM Mal, and added it to Security-
GroupX. We can also see the creation of SecuirtyGroupRuleX
which allowed ICMP traffic from the VMs of SecurityGroupX
to the VMs of SecurityGroupA, but this rule was deleted after
VMA got started and before VMA’s subnet (SubnetA) was
connected to SubnetB (through their attachment to Router1).
The fact that the attacker succeeded to send traffic of this
type in spite of the traced operations in the provenance graph,
makes the admin suspect that the problem was related to the
application of the security group rules. Therefore, the admin
examines the infrastructure and security groups, and discovers
a vulnerability in the networking service (CVE-2015-77139)
which does not allow the changes of security groups to be
reflected immediately on running VMs.

Fig. 8: Diagnosing the root cause of the port scanning threat
alert. We remove unnecessary information (e.g., version num-
bers) for readability purposes.

B. Performance

To evaluate the performance overhead of our approach, we
measure the latency in handling management requests (i.e.,
the elapsed time between sending a request from manage-
ment interfaces and the completion of its execution). The
additional latency imposed by DOMINOCATCHER consists of

9https://security.openstack.org/ossa/OSSA-2015-021



TABLE II: Attack scenarios used to evaluate DOMINOCATCHER effectiveness.
Root Causes Detected Threat Most Relevant Management Operation Types Vulnerability
Malformed security group rule addition Cross-layer Incon-

sistency
Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-9735

Overlapping security group rule addition Cross-layer Incon-
sistency

Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-10876

Update of security group is not applied [17] Port Scanning Add-Security-Group, Start-VM, Delete-Security-Group-Rule CVE-2015-7713
Race condition to bypass anti-spoofing rules [30] Data Leakage Create-Port, Create-VM, Update-Port CVE-2015-5240
Entering a different tenant network by router cross-plugged [34] Data Leakage Create-Router, Create-Port, Create-VM CVE-2014-0056
Wrong VLAN ID [5] Data Leakage Create-Network, Update-Network Not specified
Failing to delete VMs in resize state Disk Consumption Create-VM, Resize-VM, Delete-VM CVE-2016-7498
Excessive VM creation on the same host [16] Disk Consumption Create-VM Not specified

the time required for data collection as well as generating
the provenance graph incrementally. We note that the time
required for the communication10 between DOMINOCATCHER
and Neo4j server for provenance construction is included in
our measurements. Our results are measured in more than 50
trials and in three different cloud sizes: 600, 1800 and 3000
VMs with respectively 43069, 64689 and 107936 graph nodes
for each cloud size. Table III shows the ratio between the
average latency added by different DOMINOCATCHER steps
at runtime and the management operations execution time
(without DOMINOCATCHER) in different cloud sizes. As it is
shown, the provenance construction delay increases with the
size of the cloud, which can be justified by their corresponding
greater graph size and the elapsed time required for finding the
parents of the newly created entity nodes. The total overhead
in the cloud with 600, 1800 and 3000 VMs remains around
%2.1, %3.6 and %4.2 respectively in more than half of the
cases. Those results confirm that our solution is reasonably
scalable for clouds.

TABLE III: The ratio between the added latency and OpenStack
management operations execution time in various cloud sizes.

Cloud Size # of Provenance
Graph Nodes

Data
Collection

Graph
Generation

Total
Overhead

600 VMs 43069 %0.21 %1.89 %2.10
1800 VMs 64689 %0.23 %3.32 %3.56
3000 VMs 107936 %0.23 %3.94 %4.17

C. Storage Overhead

We measure the storage cost of DOMINOCATCHER, which
is important for the providers to allocate the required storage
resources for supporting DOMINOCATCHER. Our results are
depicted in Figure 9. As it is shown, for the provenance graph
constructed with 120,000 operations, only 80-megabyte storage
is needed. This number of operations is much higher than the
number of configuration API calls issued in one day in a real
enterprise cloud reported in [34], which indicates the storage
cost of DOMINOCATHCER is acceptable.

Fig. 9: Provenance storage growth.
10https://neo4j.com/docs/driver-manual/current/client-applications

VI. RELATED WORK

Provenance-based security solutions have been extensively
explored in [7], [11], [25], [26]. Many of these approaches
are based on tracing system transformations through low-
level system calls. For example, King et al. [11] leverage
data provenance to explain security incidents by tracing back
related events and system components in Unix-like operating
systems. To improve the provenance capture mechanism, the
authors in [7], [25], [26] build provenance graph based on
the information captured by Linux Security Module hooks.
To increase the efficiency of online analyses, CamQuery [26]
traces both userspace and in-kernel executions. HOLMES [19]
provides a summarized explanation of the attacker’s actions
based on low-level system calls through removing provenance
graph nodes and edges unrelated to attack campaigns. Although
most of these solutions can be extended to clouds, in contrast
to our work, they cannot directly provide a big picture about
the root cause of security incidents, and they also lack the
interpretability and scalability of our approach.

Other recent efforts [31]–[33], [35] adapt provenance analy-
sis to different domains. ProvThings [33] proposes a platform-
centric provenance-based approach for auditing the Internet
of Things (IoT) applications cross different devices. In SDN
environments, FORENGUARD [32] provides flow-level foren-
sics and ProvSDN [31] monitors the access to sensitive data
for unprivileged applications through privileged ones. Wu et
al. [35] define negative provenance to explain the absence of
events in distributed systems. Unlike our work, none of these
solutions specifically focus on cloud infrastructure management
systems.

There exist only limited efforts on applying provenance
analysis to cloud virtual infrastructures. Lu et al. [13] propose
a forensics schema to investigate the data access and Bates
et al. [1] propose to use provenance-based access control
mechanism to ensure cloud storage security. The authors
in [22], propose a tenant-aware provenance-based solution to
enhance OpenStack access control mechanism. In contrast, our
approach leverages the provenance concept to trace information
flow between virtual resources through management API calls,
which allows it to be used for monitoring a wider range of
changes in cloud infrastructure systems.

VII. CONCLUSION

In this paper, we presented DOMINOCATCHER, the
first management-level provenance solution for clouds.
DOMINOCATCHER leveraged data provenance concept to find



the management operations leading to attacks in cloud vir-
tual infrastructures and provided efficient pruning mecha-
nisms for users to pinpoint the root causes. We integrated
DOMINOCATCHER to OpenStack and demonstrated the effi-
cacy of our approach based on real attack scenarios. Moreover,
our experiments on performance and storage cost showed
the applicability of our approach with insignificant overhead.
As future work, we plan to combine our framework with
low-level provenance-based techniques to cover potential gaps
between our model and actual implementations in clouds (e.g.,
to trace changes bypassing API interfaces). Furthermore, we
will use machine learning techniques to further facilitate the
identification of operations responsible for the detected attacks.
Also, we intend to evaluate the performance of our approach
against other existing provenance-based solutions in clouds.
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