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Abstract—Cloud computing is emerging as a promising IT
solution for enabling ubiquitous, convenient, and on-demand
accesses to a shared pool of configurable computing resources.
However, the widespread adoption of cloud is still being hindered
by the lack of transparency and accountability, which has
traditionally been ensured through security auditing techniques.
Auditing in cloud poses many unique challenges in data collection
and processing (e.g., data format inconsistency and lack of
correlation due to the heterogeneity of cloud infrastructures),
and in verification (e.g., prohibitive performance overhead due
to the sheer scale of cloud infrastructures and need of runtime
verification for the dynamic nature of cloud). To this end, existing
runtime auditing techniques do not offer a practical response
time to verify a wide-range of user-level security properties for a
large cloud. In this paper, we propose a runtime security auditing
framework for the cloud with special focus on the user-level
including common access control and authentication mechanisms
e.g., RBAC, ABAC, SSO, and we implement and evaluate the
framework based on OpenStack, a widely deployed cloud man-
agement system. The main idea towards reducing the response
time to a practical level is to perform the costly operations
for only once, which is followed by significantly more efficient
incremental runtime verification. Our experimental results show
that runtime security auditing in large cloud environment is
realistic under our approach (e.g., our solution performs runtime
auditing of 100,000 users within 500 milliseconds).

Index Terms—Cloud security, security auditing, compliance
verification, runtime verification, user-level security, OpenStack.

I. INTRODUCTION

WHILE cloud computing has seen increasing interests

and adoption lately, the fear of losing control and

governance still persists due to the lack of transparency

and trust [1], [2]. Particularly, the multi-tenancy and ever-

changing nature of clouds usually implies significant design

and operational complexity, which may prepare the floor for

misconfigurations and vulnerabilities leading to violations of

security properties. Runtime security auditing may increase

cloud tenants’ trust in the service providers by providing assur-

ance on the compliance with security properties mainly derived

from the applicable laws, regulations, policies, and standards.

Evidently, the Cloud Security Alliance has recently introduced

the Security, Trust & Assurance Registry (STAR) for security

assurance in clouds, which defines three levels of certifications

(self-auditing, third-party auditing, and continuous, near real-

time verification of security compliance) [3].

However, there are currently many challenges in the area

of security auditing for the cloud. Most importantly, the sheer
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scale of cloud (e.g., a large-size cloud is said to have around

10,000 tenants and 100,000 users [4]), together with its self-

provisioning, elastic, and dynamic nature may specially render

the overhead of runtime verification process prohibitive. Addi-

tionally, there exists a significant gap between the high-level

recommendations provided in most cloud-specific standards

(e.g., Cloud Control Matrix (CCM) [5] and ISO 27017 [6])

and the low-level logging information currently available in

existing cloud infrastructures (e.g., OpenStack [7]). Further-

more, the unique characteristics of cloud computing may

introduce additional complexity to the task, e.g., the use of

heterogeneous solutions for deploying cloud systems may

complicate data collection and processing.

Existing approaches can be roughly divided into three cat-

egories. First, the retroactive approaches (e.g., [8], [9]) catch

security violations after the fact. Second, the intercept-and-

check approaches (e.g., [10], [11]) verify security invariants for

each user request before granting/denying it. Third, the proac-

tive approaches (e.g., [10], [11], [12]) verify user requests in

advance. Our work falls into the second category. Therefore,

this work potentially prevents the limitation of the retroactive

approaches, and also requires no future change plan unlike

proactive approaches (e.g., [10], [11]). In comparison with

existing intercept-and-check solutions, our approach reduces

the response time significantly and supports a wide range of

user-level security properties.

Motivating example. Here, we provide a sketch of the gap

between high-level standards and low-level input data, and the

necessity of runtime security auditing.

• Section 13.2.1 of ISO 27017 [6], which provides security

guidelines for the use of cloud computing, recommends

“checking that the user has authorization from the owner

of the information system or service for the use of the

information system or service...”.

• The corresponding logging information is available in

OpenStack [7] from at least three different sources:

– Logs of user events (e.g., router.create.end

1c73637 94305b c7e62 2899 meaning user

1c73637 from domain 94305b is creating a router).

– Authorization policy files (e.g., "create_router":

"rule:regular_user" meaning a user needs to be

a regular user to create a router).

– Database record (e.g., 1c73637 Member meaning

user 1c73637 holds the Member role).

• Continuously allocating and deprovisioning of resources

and user roles for up to 100,000 users mean any verification

results may only be valid for a short time. For instance, a

re-verification might be necessary after certain frequently-

occurred operations such as: user create 1c73637
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(meaning the 1c73637 user is created), and role grant

member 1c73637 (meaning the member role is granted

to the 1c73637 user).

Clearly, during the runtime security auditing, collecting and

processing all the data again after each operation can be very

costly and may represent a bottleneck for achieving the desired

response time due to the performance overhead involved

with data collection and processing operations (as reported

in Section V). In addition to data collection and processing,

runtime verification of ever-changing clouds within a practical

response time is essential and non-trivial. In this specific case,

no automated tool exists yet in OpenStack for these purposes.

Objective and Contributions. In this paper, we propose a

user-level runtime security auditing framework in a multi-

domain cloud environment. We compile a set of security

properties from both the existing literature on authorization

and authentication and common cloud security standards. We

perform costly auditing operations (e.g., data collection and

processing, and initial verification on whole cloud) only once

during the initialization phase so that later runtime operations

can be performed in an incremental manner to reduce the cost

of runtime verification significantly with a negligible delay.

We rely on formal verification methods to enable automated

reasoning and provide formal proofs or counter examples of

compliance. We implement and integrate the proposed run-

time auditing framework into OpenStack, and report real-life

experiences and challenges. Our framework supports several

popular cloud access control and authentication mechanisms

(e.g., role-based access control (RBAC) [13], attribute-based

access control (ABAC) [14] and single sign-on (SSO)) with the

provision of adding such more extensions. Our experimental

results confirm the scalability and efficiency of our approach.

The main contributions of this paper are as follows:

• We propose an efficient user-level runtime security auditing

framework in a multi-domain cloud environment.

• The study on security properties provides a bridge between

the cloud security standards and the literature on multi-

domain access control and authentication.

• Our prototype system can be a part of the auditing

system for OpenStack-based cloud infrastructure manage-

ment systems providing a practical auditing solution with

the support of common access control and authentication

mechanisms (e.g., RBAC, ABAC and SSO).

• The experimental results show that our proposed system

is realistic for large-scale cloud environments (e.g., the

response time is less than 500 ms for a large cloud with

100,000 users).

• In contrast to our previous work [9], which adopts a retroac-

tive approach that can only catch a security compliance vi-

olation after the fact, we are proposing a different, runtime

approach in this paper. The major extensions include: i) a

new auditing framework for catching security violations at

runtime (Section III); ii) the support of not only RBAC

but also attribute-based access control (ABAC) and single

sign-on (SSO) (Sections II-A, II-B and III-D); iii) new

algorithms and implementation for supporting incremental

verification (Sections IV-B and IV-C); and iv) new evalua-

tion results on runtime auditing (Section V).

The rest of this paper is organized as follows. Section II

presents attack scenarios and security properties. Section III

describes our methodology. Section IV discusses system ar-

chitecture and implementation details. Section V gives exper-

imental results. Section VI discusses several aspects of our

approach. Section VII reviews the related work. Section VIII

concludes our paper discussing future directions.

II. USER-LEVEL SECURITY PROPERTIES

We first show different attack scenarios based on authoriza-

tion and authentication models. Then we formulate user-level

threats as a list of security properties mostly derived from the

cloud-specific standards, and finally discuss our threat model.

A. Models

We now describe RBAC, ABAC and SSO models.

RBAC Model. We focus on verifying multi-domain role-based

access control (RBAC), which is adopted in real world cloud

platforms (as shown in Table I). In particular, we assume the

extended RBAC model as in [15], which adds multi-tenancy

support in the cloud. The definitions of different components

of this model can be found in [15].

Plugins
Cloud Platforms

OpenStack [7] Amazon EC2 [16] Microsoft Azure [17] Google GCP [18] VMware [19]

RBAC • • • • •
ABAC Blueprint [20] • Azure AD Firebase •
SSO Federation AWS Directory Microsoft account G Suite myOneLogin

TABLE I
USAGE OF RBAC, ABAC AND SSO IN MAJOR CLOUD PLATFORMS

Example 1 Figure 1 depicts our running example, which is

an instance of the access control model presented in [15]. In

this scenario, Alice and Bob are the admins of domains, Da
and Db, respectively, with no collaboration (trust) between the

two domains; Pa and Pb are two tenants1 respectively owned

by the two domains. In such a scenario, we consider a real

world vulnerability, OSSN-00102, found in OpenStack, which

allows a tenant admin to become a cloud admin and acquire

privileges to bypass the boundary protection between tenants,

and illicitly utilize resources from other tenants while evading

the billing. Suppose Bob has exploited this vulnerability to

become a cloud admin. Figure 1 depicts the resultant state of

the access control system after this attack. Therein, Mallory

belonging to domain Da is assigned a tenant-role pair (Pb,

Member), which is from domain Db. This violates the security

requirement of these domains as they do not trust each other.

ABAC Model. ABAC [14], is considered as a strong candidate

to replace RBAC in Sandhu [21], which identifies several limi-

tations of RBAC and thus emphasizes the importance of ABAC

specially for large infrastructures (e.g., cloud). In fact, major

cloud platforms have started supporting ABAC (as shown in

Table I). The definitions of different components of this model

can be found in [14]. We mainly use two ABAC functions, i.e.,

user attribute (UATT) and object attribute (OATT).

1We interchangeably use the terms, tenant and project in Figures 1 and 2
2Keystone exposes privilege escalation vulnerability, available at:

https://wiki.openstack.org/wiki/OSSN/OSSN-0010
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  Domain

{Da}

Project

{Pa}

Role

{Admin, Member}

Object

Operation

Service

UO

{(Mallory,Da)}

UA

{(Bob,(Pa,Admin))}

PO {(Pa,Da)}

Project-role pair

{(Pa,Admin), (Pa,Member)}

PA
PRMS

ot_service

 Token

Group

GA

GO

user_token

token_projects
token_roles

PO {(Pb,Db)}

  Domain

{Db}

Project-role pair

{(Pb,Admin), (Pb,Member)}

Project

{Pb}

UO

{(Alice,Db)}

  User

      , Alice} UA

{(Alice,(Pb,Admin)),

(Mallory,(Pb,Member))}

User

             {Bob,  Mallory}

Role

{Admin, Member}

Fig. 1. Two domain instances of the access control model of [15] depicting the
resultant state of the access control system after the exploit of the vulnerability,
OSSN-0010. The shaded region and dotted arrows show an instance of the
exploit described in Example 1.

Example 2 Figure 2 depicts our running example for ABAC,

and shows a similar attack scenario as Example 1. The model

in the figure is an instance of the access control model

presented in [22]), and shows the resultant state of the access

control system after this attack.

Project

{Pa}

UATT

{Admin}

Project

{Pb}

userOwner

{(Bob,Pa)}   User

      , Alice}

{(Alice,(Pb,Admin)),

(Mallory,(Pb,Member))}

User

             {Bob,  Mallory}

Auth Auth
Action

{read,write,update}
Object

{VM1,VM2}

Object

{VM3,VM4}

UATT

{Admin , Member}

userOwner

{(Mallory,Pa)}

userOwner

{(Alice,Pb)}

uattOwner

{(Member,Pa)}
uattOwner

{(Member,Admin,Pb)}

OATT

{location, class}

{(Bob,(Pa,Admin))}oattOwner

{(location,Pa)}
OATT

{location, class}

oattOwner

{(location,Pa)}

objOwner

{(VM1,Pa),

(VM2,Pa)}

objOwner

{(VM3,Pb),

(VM4,Pb)}

Fig. 2. Two tenant instances of the access control model of [22] depicting the
resultant state of the access control system after the exploit of the vulnerability,
OSSN-0010. The shaded region and dotted arrows show an instance of the
exploit described in Example 2.

SSO Mechanism. SSO, which is a popular cloud authentica-

tion extension and supported by major cloud platforms (shown

in Table I), only requires a single user action to permit a user

to access all authorized computers and systems. In this work,

we detail two SSO protocols: OpenID [23] and SAML [24]

supported by OpenStack and many other cloud platforms.

However, there are several attacks (e.g., [25], [26], [27],

[28]) on two above-mentioned SSO protocols. The following

describes several security concerns specific to these protocols.

• In SAML, there is no communication between service

provider (SP) and identity provider (IdP). Therefore, an

SP maintains a list of trusted IdPs, and any ID generated

by an IdP that is not in this list must be strictly restricted.

• On the other hand, OpenID accepts any IdP by commu-

nicating with the corresponding relying party (RP), which

provides the login service as a third party. Therefore, a

proper synchronization between IdP and RP is essential

for the OpenID protocol. Otherwise, it may result following

security critical incidents:

– Logging out from IdP may not ensure logging out from

RP, and thus an unauthorized session is possible.

– Linking to an existing account with an OpenID without

any authentication may result unauthorized access.

To address such security concerns and to be compliant with

aforementioned cloud-specific security standards, we devise

security properties in the next subsection.

B. Security Properties

Table II presents an excerpt of the list of user-level security

properties that we identify from the access control and authen-

tication literature, relevant standards (e.g., ISO 27002 [29],

NIST SP 800-53 [30], CCM [5] and ISO 27017 [6]), and

the real-world cloud implementation (e.g., OpenStack). Even

though some properties (e.g., cyclic inheritance) are not di-

rectly found in any standard, they are included based on their

importance and impact described in the literature (e.g., [31]).

RBAC Security Properties. RBAC-specific security proper-

ties are shown in Table II. For our running example, we will

focus on following two properties. Common ownership: based

on the challenges of multi-domain cloud discussed in [31],

[15], users must not hold any role from another domain.

Minimum exposure: each domain in a cloud must limit the

exposure of its information to other domains [15].

Example 3 The attack scenario in Example 1 violates the

common ownership property. According to the property, Mal-

lory must not hold a role member in tenant Pb belonging to

domain Db, because Mallory belongs to domain Da and there

exists no collaboration between domains Da and Db.

Standards

R
B

A
C

A
B

A
C

S
S

O

Properties ISO27002 [29] ISO27017 [6] NIST800 [30] CCM [5]

Role activation [32] 13.2.2b 15.2.2b AC-1 IAM-09 • •
Permitted action [32] 11.2.1.b, 1.2.2c 13.2.1b, 13.2.2c AC-14 IAM-10 • •
Common ownership [31] 11 13 AC IAM • •
Minimum exposure [15] 11.6.1 13.4.1 AC-4 IAM-04,06 • •
Separation of duties [15] 11.6.2 13.6.2 AC-5 IAM-02,05 •
Cyclic inheritance [31] •
Privilege escalation [31] 11.2.2.b 13.2.2b AC-6 IAM-08 • •
Cardinality [32] 11.2.4 13.2.4 AC-1 • •
Consistent constraints [33]

add/delete user 11.5.1 13.4.2 AC-7,9 IAM-02 •
modify user attributes 13.2.2b 15.2.2b AC-1 IAM-09 •
add/delete object 13.2.2b 15.2.2b AC-1 IAM-09 •
modify object attributes 13.2.2b 15.2.2b AC-1 IAM-09 •

Session de-activation [30] 11.5.5 13.2.8 AC-12 • •
User-access validation [6] 11.5.2 13.4 AC-3 IAM-10 •
User-access revocation [29] 11.2.1h 13.2.1h AC-2 IAM-11 •
No duplicate ID [5] 11.5.2 13.5.2 AC-2 IAM-12

Secure remote access [6] 11.4.2 13.4.2 AC-17 IAM-02,07

Secure log-on [6] 11.5.1 13.4.2 AC-7,9 IAM-02

Session time-out [30] 11.5.5 13.2.8 AC-12 •
Concurrent session [30] 13.5.4 AC-10

Brute force protection 11.2.2.b 13.2.2b AC-1 IAM-09 •
No caching 11.2.1.b, 1.2.2c 13.2.1b, 13.2.2c AC-14 IAM-10 •

TABLE II
AN EXCERPT OF USER-LEVEL SECURITY PROPERTIES

ABAC Security Properties. Table II provides an excerpt of

ABAC-related security properties supported by our auditing

system. Some properties are specific to ABAC, and rests are

adopted from RBAC. We only discuss the following properties,

which are extended or added for ABAC.

• Consistent constraints: Jin et al. [33] define constraints

for different basic changes in ABAC elements e.g.,

adding/deleting users/objects. After each operation, certain

changes are necessary to be properly applied. This property

verifies whether all constraints have been performed.

• Common ownership: For ABAC, the common ownership

property also includes objects and their attributes so that an

object owner and the owner of the allowed user performing

certain actions on that object must be the same.

Authentication-related Security Properties. Table II shows

an excerpt of security properties related to generic authen-

tication mechanisms and extensions (e.g., SSO). We discuss

the SSO-related properties as follows. Brute force protection:
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account lockout, CAPTCHA or any such brute force protection

must be applied in SSO. No caching: SSO and associated

applications should set no-cache and no-store cache directives.

User access revocation: logout from one application must end

sessions of other applications. User access validation: only a

valid authentication token must pass the authentication step.

C. Threat Model

Our threat model is based on two facts. First, our solution

focuses on verifying the security properties specified by cloud

tenants, instead of detecting specific attacks or vulnerabilities

(which is the responsibility of IDSes or vulnerability scanners).

Second, the correctness of our verification results depends

on the correct input data extracted from logs and databases.

Since an attack may or may not violate the security properties

specified by the tenant, and logs or databases may potentially

be tampered with by attackers, our results can only signal

an attack in some cases. Specifically, the in-scope threats

of our solution are attacks that violate the specified secu-

rity properties and at the same time lead to logged events.

The out-of-scope threats include attacks that do not violate

the specified security properties, attacks not captured in the

logs or databases, and attacks through which the attackers

may remove or tamper with their own logged events. More

specifically, in this work we focus on user-level security threats

and rely on existing solutions (e.g., [11], [12]) to identify

virtual infrastructure level threats. We assume that, before

our runtime approach is launched, an initial verification is

performed and potential violations are resolved. However, if

our solution is added from the commencement of a cloud,

obviously no prior security verification (including the initial

phase) is required. We also assume that tenant-defined policies

are properly reflected in the policy files of the cloud platforms.

III. RUNTIME SECURITY AUDITING

This section presents our runtime security auditing frame-

work for the user-level in the cloud.

A. Overview

Figure 3 shows an overview of our runtime auditing ap-

proach. This approach contains two major phases: i) initializa-

tion, where we conduct a full verification on the collected and

processed cloud data, and ii) runtime, where we incrementally

verify the compliance upon dynamic changes in the cloud.

The initialization phase is performed only once through an

offline verification. This phase performs all costly operations

such as data collection and processing, and an initial full

compliance verification for a list of security properties. The

initial verification result is stored in the result repository. For

the latter, we devise an incremental verification approach to

minimize the workload at the runtime. During the runtime

phase, each management operation (e.g., create/delete a user/-

tenant) is intercepted, its parameters are processed with the

previous result, and finally the verification engine evaluates

the compliance and provides the latest verification result. We

elaborate major phases of our system as follows.

Data Collection Data Processing Offline Verification

Interceptor Data Processing Incremental Verification

Verif. 

Results

Initialization

Run-time
Management

operation

Cloud data

Event

parameters

Previous result

Current 

result

i

{Property}iCloud

Fig. 3. An overview of our runtime security auditing approach

B. Initialization Phase

Our runtime auditing approach at first requires one-time

data collection and processing, and full verification of the

cloud, namely the initialization phase, against a list of security

properties. Initially, we collect all necessary data from the

cloud, which are in different formats and in different levels

of abstractions. Therefore, we further process these data to

convert the format and correlate them to identify required

relationships for considered security properties. Then, we

generate inputs for the verification engine incorporating the

processed data in the previous step. Finally, the verification

engine checks the compliance for a list of security properties,

and provides an initial verification result.

The collection engine is responsible for collecting the

required data in a batch mode from the cloud management

system. The role of the processing engine is to filter, format,

aggregate, and correlate this data. The required data is dis-

tributed throughout the cloud and in different formats (e.g.,

files and databases). The processing engine must pre-process

the data in order to provide specific information needed to

verify given properties. A final processing step is to generate

and store the inputs to be used by the compliance verification

engine. Note that the format of the inputs depends on the

selected back-end verification engine.

The compliance verification engine is to perform the actual

verification of the security properties. We use formal methods

to capture the system model and to verify properties, which

facilitates automated reasoning and is generally more practical

and effective than manual inspection. If a security property is

violated, evidences can be obtained from the output of the

verification back-end, e.g., a set of real data in the cloud for

which all conditions of a security property are not satisfied

are provided as a feedback. Once the outcome of the initial

verification is ready, results and evidences are stored in the

result repository and made accessible to the runtime engine.

C. Runtime Phase

The initialization phase conducts an offline verification,

where we verify security properties on the whole cloud. How-

ever, verifying the whole cloud after each configuration change

is very expensive. Alternatively, we intercept each event and

verify the impact of the events in an incremental manner,

where we perform runtime verification on a minimal dataset

based on the current change to provide a better response time,

to catch a security violation.

We update the verification results continuously by verifying

the cloud at runtime. The runtime verification is event-driven

and property-specific. Table III shows the events that may

affect the result of verification for certain properties. The

bottom part of Figure 3 depicts the steps of this phase. We
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intercept each operation request generated from the cloud

management interface. We further retrieve the parameters of

the request and pass them to the data processing module.

The data processing module performs similarly as described

in Section III-B. However, during the runtime phase, mostly

partial data are sent for the incremental verification for each

security property. Thus the incremental verification is only

conducted on the impact of the current change. Then, the

final verification result is inferred from the result of current

incremental verification and the previous result. Incremental

verification is performed using any of the two methods:

i) deltaVerify, where compliance verification mechanism dis-

cussed in the initialization phase is applied on the delta

data, and ii) customAlgo, where security property specific

customized algorithms are performed. We discuss our runtime

verification algorithm in more details in Section IV-B. In the

following examples, we assume that the previous verification

result for a specific property is stored in Resultt0, the pa-

rameters of the intercepted event is in ∆i and the updated

result will be stored in Resultt. For example, all user-role

pairs violating the common ownership property at time t0 are

stored in Resultt0 as {Mallory,Da, (Pb,Member), Db}.

Example 4 Table III shows that the verification result for the

common ownership property may change for following events:

grant role, delete role, delete user, delete tenant and delete

domain. Upon intercepting any of these events, we conduct

incremental verification as follows:

• Grant a role: Each role assignment alone may affect the

common ownership property, and hence, it does not depend

on the previous assignments. Therefore, upon a grant role

request, we only verify the parameters of the intercepted

event using the deltaVerify method, and combine the ob-

tained result with the previous result (Resultt0) to infer

the updated result (Resultt).
• Delete a role: If the deleted role (∆i) is present in the

previous result (i.e., ∆i ∈ Resultt0), then we update

the current result by removing that role (i.e., Resultt =
Resultt0 −∆i). Otherwise, the result remains unchanged

(i.e., Resultt = Resultt0). Deleting a user/tenant/domain

can be similarly handled.

Example 5 Similarly, upon intercepting any of the events

marked for the permitted action property in Table III, we

conduct incremental verification as follows:

• Grant a role: If the granted role (∆i) is present in the

previous result (i.e., ∆i ∈ Resultt0), then we update

the current result by removing that role (i.e., Resultt =
Resultt0 − ∆i). Otherwise, the result remains unchanged

(i.e., Resultt = Resultt0).

• Delete a role: If the deleted role (∆i) is present in the

previous result (i.e., ∆i ∈ Resultt0), then we update

the current result by removing that role (i.e., Resultt =
Resultt0 − ∆i). Otherwise, the result remains unchanged

(i.e., Resultt = Resultt0). Deleting a user/tenant/domain

can be similarly handled.

Identifying the Impacts of Events. By observing the impacts

of cloud events, Table III lists all events that may change

the verification result of certain security properties. However,
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Separation of Duties • • • • •
Privilege Escalation • • • • • •

Cardinality • • • • • • • • • • • • •
Cyclic Inheritance • •
No Duplicate ID • • • • • • • • • • • •

User Access Validation • • •
User Access Revocation • • • • • • • • • • • •
Secure Remote Access • • • •

Secure Log-on • • • •
Session Time-out • • • • • • • • • • • •

Concurrent Session • • • • • •

TABLE III
EVENTS THAT INFLUENCE VERIFICATION RESULTS FOR CERTAIN

PROPERTIES

identifying impacts of events in cloud can be challenging.

Also, the completeness of the method of identifying the

impacts, relies on the specifications of APIs by the cloud

platforms. In this work, we mainly follow two methods

(i.e., API documentation and infrastructure change inspection)

proposed by Bleikertz et al. [11]. Firstly, we go through the

API documentation provided by cloud platforms to obtain

API specifications including their functionality, parameters and

impacts on the infrastructure. Secondly, we perform different

events and observe the infrastructure configuration change

to capture the impact of those events. Finally, we combine

this knowledge with the definition of security properties to

populate Table III.

Provision of Enriching the Security Property List. Beside

the security properties in Section II-B, tenants might intend

to add new security properties over time. Our framework pro-

vides the provision of adding new security properties through

following simple steps. First, the new security property is

defined in the cloud system context, which can be simply

performed by following our existing techniques discussed in

Section II-B to apply high-level standard terminologies to

cloud specific resources. Next, the property is translated to the

first order logic and then to Constraint Satisfaction Problems

(CSP) constraints, and in many cases the existing relations

discussed in Section III-D can be re-used as they include

basic relations such as belongs to, owner of, authorized for,

etc. Our data collection engine already collects data from all

relevant sources of data of a cloud platform regardless of

security properties. Therefore, no extra effort is needed in the

data collection phase, unless the new property requires data

from a different layer in the cloud (e.g., SDN). Then, the data

processing effort for a new property mainly involves building

correlation between data from different sources, because other

processing steps are mostly property-independent. The remain-

ing initial verification step is only to add constraints of the new

property to the verification list. Finally, we identify the events

that may alter the verification result of the new property by

re-utilizing the knowledge of impacts of events, and perform

the runtime verification through incremental steps either using

the deltaVerify method or by a customized algorithm (as in

Section IV-B). Additionally, whenever there is any change

in the event specification for a cloud system, we capture the

update on impacts (if any) of events on the security properties.

D. Formalization of Security Properties

As a back-end verification mechanism, we formalize verifi-

cation data and properties as Constraint Satisfaction Problems
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(CSP) and use a constraint solver, namely Sugar [34], to

validate the compliance. CSP allows formulation of many

complex problems in terms of variables defined over finite

domains and constraints. Its generic goal is to find a vec-

tor of values (a.k.a. assignment) that satisfies all constraints

expressed over the variables. If all constraints are satisfied,

the solver returns SAT, otherwise, it returns UNSAT. In the

case of a SAT result, a solution to the problem is provided.

In our case, we formalize each security property in CSP

to verify in Sugar. After verification, Sugar provides proper

evidence (a.k.a counter examples) of a violation (if any) of a

security property. In the following, we first provide a generic

description of model formalization, then illustrate examples

of property formalization, and finally show some counter

examples for those security properties.

Model Formalization. Referring to Figures 1 and 2, entities

are encoded as CSP variables with their domains defini-

tions (over integer), where instances are values within the

corresponding domain. For example, User is defined as a

finite domain ranging over integer such that (domain User
0 max user) is a declaration of a domain of users, where

the values are between 0 and max user. Relationships and

their instances are encoded as relation constraints and their

supports, respectively. For example, AuthorizedR is encoded

as a relation, with a support as follows: (relation AuthorizedR
3 (supports (r1,u1,t1) (r2,u2,t2))). The support of this relation

will be fetched and pre-processed in the data processing step.

The CSP code mainly consists of four parts:

• Variable and domain declaration. We define different enti-

ties and their respective domains. For example, u and op are

entities (or variables) defined respectively over the domains

User and Operation, which range over integers.

• Relation declaration. We define relations over variables and

provide their support from the verification data.

• Constraint declaration. We define the negation of each

property in terms of predicates over the involved relations

to obtain a counter-example in case of a violation.

• Body. We combine different predicates based on the prop-

erties to verify using Boolean operators.

Properties Formalization for RBAC. Security properties are

presented as predicates over relation constraints and predi-

cates. We detail two representative properties in this paper.

We first express these properties in first order logic [35] and

then in their CSP formalization (using Sugar syntax). Table IV

summarizes the relations that we use in these properties.

1) Common ownership: Users are authorized for the roles that

are only defined within their domains.

∀u ∈ User,∀d ∈ Domain, ∀r ∈ Role,∀t ∈ Tenant (1)

BelongsToD(u, d) ∧ AuthorizedR(u, t, r) −→

TenantRoleDom(t, r, d)

The corresponding CSP constraint is

(and BelongsToD(u, d) AuthorizedR(u, t, r) (2)

(not TenantRoleDom(t, r, d)))

2) Minimum exposure: We assume that the user access is

revoked properly and that each domain’s administrator may

share a set of objects (resources) with other domains. The

administrator defines accordingly a policy governing the

shared objects, the allowed domains for a given object

and the allowed actions for a given domain with respect

to a specific object. During data processing, we recover

for each domain, the set of foreign objects (belonging to

other domains) and the actual operations performed on

those objects (from the logs). This property allows checking

whether the collected and correlated data complies with the

defined policy of each domain.

∀d, od ∈ Domain, ∀o ∈ Object,∀op ∈ Operation, (3)

∀r ∈ Role, ∀t ∈ Tenant,∀u ∈ User

LogEntry(d, t, u, r, o, op) ∧ BelongsTo(u, d)∧

OwnerD(od, t, o) −→ AuthorizedOp(d, t, u, r, o, op))

The CSP constraint for this property is:

(and(and LogEntry(d, t, u, r, o, op) (4)

OwnerD(od, t, o) BelongsTo(u, d))

(not (AuthorizedOp(d, t, u, r, o, op))))

Properties Formalization for ABAC. For space limitation,

we show formalization of one security property for ABAC.

Common ownership: Formally the common ownership

property is violated in the following conditions:

userOwner(u) 6= uattOwner(userRolei(u)) OR

objOwner(o) 6= oattOwner(objRolei,j(o)). Through

this extension, we complement the previous definition, and

the property is now more general in the sense that we can

identify the misconfiguration in defining policies for an

object. Following example further explains this benefit. Alice

is a user (from the user set, U) owned by the domain, d1.

Alice holds a member role in the domain, d2, expressed as

userRole2(Alice). The owner of this role is the domain,

d2 (inferred from the uattOwner(userRole2(Alice))
relationship). This situation violates the common

ownership property, as the first part of the condition

(i.e., userOwner(u) 6= uattOwner(userRolei(u))) is true.

Additionally, there is an object i.e., VM1 (from the object

set O) owned by the domain, d2. The policy related to VM1
states that a user with the member role of the d2 domain can

read from VM1 (as described in objRole1, 2(VM1)). To

verify the owner of the role that policy allows certain action on

the object using the oattOwner(objRole1, 2(VM1)) relation.

In this case, objOwner(o) 6= oattOwner(objRolei,j(o)) is

false; hence, the property is preserved.

Since ABAC is more expressive, there might be a larger

set of properties for ABAC (as shown in Table II). However,

the verification complexity depends more on the security

properties, and less on the model. For example, the common

ownership, permitted action and minimum exposure properties

show different level of complexities, as shown through their

formal representation and as supported by the experiment

results in Section V.

Properties Formalization for SSO. Due to space limitation,

we present formalization steps of one SSO related security

property (i.e., user access revocation). The user access revo-

cation property is for the token-based user access. At a given

time, for active tokens, we check that none of the situations
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Relations in Properties Evaluate to True if Corresponding Relations in Fig. 1

AuthorizedOp(d, t, u, r, o, op) In domain d, and tenant t, the user u, with the role r is authorized to perform operation op on

object o
UA, PO, tenant-role pair, PA, PRMS

OwnerD(od, t, o) Domain od is the owner of the object o in tenant t PO, tenant-role pair, PA

AuthorizedR(u, t, r) User u belonging to tenant t is authorized for the role r UA, tenant-role pair

BelongsToD(u, d) User u belongs to the domain d UO

TenantRoleDom(t, r, d) Role r is defined within the domain d in tenant t PO, tenant-role pair

LogEntry(d, t, u, r, o, op) Operation op on object o is actually performed by user u having role r in tenant t and domain d ND

ActiveToken(tok, d, t, u, r, time) Token tok is active at time time and in use by user u having role r in tenant t and domain d UA, token tenants, token roles, PO,

tenant-role pair

TABLE IV
CORRESPONDENCE BETWEEN RELATIONS IN OUR FORMALISM AND RELATIONSHIPS/ENTITIES IN FIGURE 1. NOTE THAT ONE OF THE RELATIONS (IN

THIRD COLUMN) IS DENOTED BY ND AS IT IS INFERRED FROM DYNAMIC DATA (E.G., LOGS).

leading to their revocation has been occurred. Function TimeS-

tamp(tok) returns the token expiration time.

∀tk ∈ Token,∀r ∈ Role, ∀t ∈ Tenant, (5)

∀u ∈ User,∀d ∈ Domain

ActiveToken(tk, d, t, u, r, Time) −→

AuthorizedR(u, t, r) ∧ IsActiveR(r, t, u)∧

BelongsToD(u, d) ∧ IsValidU(u) ∧ IsValidD(d)

∧IsvalidT(t) ∧ TimeStamp(tk) > Time

Thus, the corresponding CSP constraint is:

(and ActiveToken(tk, d, t, u, r, time)(or (not (6)

(not AuthorizedR(u, t, r))(not IsActiveR(r, t, u))

(IsValidU(u))(notIsvalidT(t))(notBelongsToD(u,d))

(notIsValidD(d))(not(> TimeStamp(tk)Time))))

Evidences of Violations. Our auditing system using the for-

mal verification tool, Sugar, individually identifies the causes

(a.k.a. counter examples) for each security property violated

in the cloud. With the following examples, we show how our

system can locate the cause of the violations.

Example 6 The CSP predicate for the com-

mon ownership property is as follows:

(and BelongsToD(u, d)AuthorizedR(u, t, r) (not T enant-
RoleDom(t, r, d))). The property is violated when a

user from one domain holds a tenant-role pairs from

another domain. In other words, in case of a violation

there exists at lease a set of predicates as follows:

(and BelongsToD(u1, d1) AuthorizedR(u1, t2, r2) (not
T enant-RoleDom(t2, r2, d1))); meaning that the user u1
from domain d1 holds a role pair t2-r2, which is not from

domain d1. In such cases, our auditing system using Sugar

identifies that the (u1, d1, t2, r2) tuple is the cause for a

violation of the common ownership property. In Section IV,

Example 7 further extends this example to show concrete

examples of evidences provided by our auditing system.

IV. IMPLEMENTATION

In this section, we first illustrate the architecture of our

system. We then detail our auditing framework implementation

and its integration into OpenStack along with the challenges

that we face and overcome.

A. Architecture

Figure 4 shows a high-level architecture of our runtime

verification framework. It has three main components: data

collection and processing module, compliance verification

module, and dashboard & reporting module. In the following,

we describe different engines inside the data collection and

processing module. The security property extractor identifies

the sources of required data for a list of security properties.

The event intercepter intercepts each management operations

requested by the user in the cloud infrastructure system.

The data collection engine interacts mainly with the cloud

management system, the cloud infrastructure system (e.g.,

OpenStack), and elements in the data center infrastructure

to collect various types of audit data. Then the data pro-

cessing engine aids to build the correlation and to uniform

the collected data. Our compliance verification module is

responsible for the offline and runtime verification using

the formal verification and validation (V&V) tools and our

custom algorithms. Finally, the dashboard & reporting module

interacts with the cloud tenant through the dashboard to obtain

the tenant requirements and to provide the tenant with the

verification results in a report. Tenant requirements encompass

both general and tenant-specific security policies, applicable

standards, as well as verification queries.

Verification 

Result Repository 

Data Collection and 

Processing Module 

Compliance 

Verification Module

Requirements (general/ tenant-specific security 

policies and standards) and Audit Requests

Result Processing 

Engine

Dashboard & 

Reporting Module

Cloud Infrastructure 

System

(e.g., OpenStack)

Cloud Management 

System

Data Center Infrastructure

(switches compute nodes, 

middleboxes,…)

Event Interceptor

Data Collection 

Engine

Data Processing 

Engine

Formal V&V 

Engine

Custom 

Algortihms

Dashboard

Reporting Engine

Security Property 

Extractor

Audit

Reports

Fig. 4. A high-level architecture of our runtime verification framework

B. Integration into OpenStack

We focus mainly on three components in our implementa-

tion: the data collection and processing module, the compli-

ance verification module and dashboard & reporting module.

In the following, we first provide background on OpenStack,

and then describe our implementation details.

Background. OpenStack [7] is an open-source cloud infras-

tructure management platform in which Keystone is its identity

service, Neutron is its network component, Nova is its compute

component, and Ceilometer is its telemetry.

Data Collection Engine. The collection engine involves sev-

eral components of OpenStack e.g., Keystone and Neutron for

collecting data from log files, policy files, different OpenStack

databases and configuration files from the OpenStack ecosys-

tem to fully capture the configuration. We present hereafter dif-

ferent sources of data in OpenStack along with the current sup-

port for auditing offered by OpenStack. The main sources of

data in OpenStack are logs, configuration files, and databases.

Table V shows some sample data sources. The OpenStack

logs are maintained separately for each service, e.g., Neutron,

Keystone, in a directory named var/log/component name,

e.g., keystone.log and keystone access.log are stored in the
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Relations Sources of Data

AuthorizedOp user, assignment, role in Keystone database and

policy.json and policy.v3cloudsample.json

OwnerD user, assignment in Keystone database and policy.json

AuthorizedR user, tenant, assignment in Keystone database

BelongsToD user, domain tables in Keystone database

TenantRoleDom tenant, assignment, domain tables in Keystone database

LoggedEntry keystone access.log and Ceilometer database

ActiveToken Keystone database and keystone access.log

TABLE V
SAMPLE DATA SOURCES IN OPENSTACK FOR RELATIONS IN TABLE IV

var/log/keystone directory. Two major configuration files,

namely policy.json and policy.v3cloudsample.json, contain

policy rules defined by both the cloud provider and tenant

admins, and are stored in the keystone/etc/ directory. The

third source of data is a collection of databases, hosted in

a MySQL server, that can be read using component-specific

APIs such as Keystone and Neutron APIs. With the proper

configuration of the OpenStack middleware, notifications for

specific events in Keystone, Neutron and Nova can be gathered

from the Ceilometer database.

The effectiveness of a verification solution critically depends

on properly collected evidences. Therefore, to be comprehen-

sive in our data collection process, we firstly check fields

of all varieties of log files available in Keystone and more

generally in OpenStack, all configuration files and all Keystone

database tables (18 tables). Through this process, we identify

all possible types of data with their sources. Due to the diverse

sources of data, there exist inconsistencies in formats of data.

On the other hand, to facilitate verification, presenting data in

a uniform manner is very important. Therefore, we facilitate

proper formatting within our data processing engine.

Data Processing Engine. Our data processing engine, which

is implemented in Python, mainly retrieves necessary infor-

mation from the collected data, converts it into appropri-

ate formats, recovers correlation, and finally generates the

source code for Sugar. First, our tool fetches the necessary

data fields from the collected data, e.g., identifiers, API

calls, timestamps. Similarly, it fetches access control rules,

which contain API and role names, from policy.json and

policy.v3cloudsample.json files. In the next step, our pro-

cessing engine formats each group of data as an n-tuple,

i.e., (user, tenant, role, etc.). To facilitate verification, we

additionally correlate different data fields. In the final step, the

n-tuples are used to generate the portion of the Sugar’s source

code, and the relationships for security properties (discussed

in Section III-D) are also appended with the code. Different

scripts are needed to generate the Sugar source codes for

the verification of different properties, since relationships are

usually property-specific.

The logs generated by each component of OpenStack

usually lack correlation. Even though Keystone processes

authentication and authorization steps prior to a service access,

Keystone does not reveal any correlated data. Therefore, we

build the data correlation support within the processing engine.

For an example, we infer the relation (user operation) from

the available relations (user role) and (role operation).
In our settings, we have 61, 031 entries in the (user role)
relations for 60, 000 users. The number of entries is larger

than the number of users, because there are some users with

multiple roles. With the increasing number of users having

multiple roles, the size of this relation grows, and as a result,

it increases the complexity of the correlation step.

Initial Compliance Verification. The compliance verification

module contains two major modules responsible for the initial

verification and runtime verification respectively. The pre-

requisite formalization steps of the initial verification are

already discussed in Section III-D. Here, we explain different

parts of a Sugar source code through a simple example and

verification algorithm (as in Algorithm 1) in the following.

Listing 1. Sugar source code for the common ownership property
1 // Declaration

2 (domain Domain 0 500) (domain Tenant 0 1000)

3 (domain Role 0 1000) (domain User 0 60000)

4 ( int D Domain) (int R Role)

5 ( int P Tenant) ( int U User)

6 // Relations Declarations and Audit Data as their Support

7 ( relation BelongsToD 2 (supports (100 401) (40569 123)

8 (102 452) (145 404) (156 487) (128 463)))

9 ( relation AuthorizedR 3 ( supports (100 301 225)

10 (40569 1233 9) (102 399 230) (101 399 231)))

11 ( relation TenantRoleDom 3 (supports (301 225 401)

12 (1233 9 335) (399 230 452) (399 231 452)))

13 // Security Property : Common Ownership

14 ( predicate (ownership D R U P)

15 (and (AuthorizedR U P R ) (BelongsToD U D)

16 (not(TenantRoleDom P R D)) ))

17 (ownership D R U P)

Example 7 Listing 1 is the CSP code to verify the com-

mon ownership property. Each domain and variable are first

declared (lines 2-5). Then, the set of involved relations,

namely BelongsToD, AuthorizedR, and TenantRoleDom
are defined and populated with their supporting tuples (lines

7-12), where the support is generated from actual data in the

cloud. Then, the common ownership property is declared as a

predicate, denoted by ownership, over these relations (lines

14-16). Finally, the predicate is instantiated (line 17) to be

verified. As we are formalizing the negation of the properties,

we are expecting the UNSAT result, which means that all

constraints are not satisfied (i.e., no violation of the property).

Note that the predicate is unfolded internally by the Sugar

engine for all possible values of the variables, which allows

to verify each instance of the problem among possible values

of domains, users and roles.

In this example, we also describe how a violation of

the common ownership property may be caught by our

verification process. Firstly, our program collects data from

different tables in the Keystone database including users,

assignments, and roles. Then, the processing engine

converts the collected data and represents as tuples; for our

example: (40569 123) (40569 1233 9) (1233 9 335), where

Mallory: 40569, Da: 123, Pb: 1233, member: 9 and Db: 335.

Additionally, the processing engine interprets the property

and generates the Sugar source code (as Listing 1) using

processed data and translated property. Finally, the Sugar

engine is used to verify the security properties. The CSP

predicate for the common ownership property is as follows:

(and BelongsToD(u, d)AuthorizedR(u, t, r) (not T enant−
RoleDom(t, r, d)). As Mallory belongs to domain Da,

BelongsToD(Mallory,Da) evaluates to true. Mallory

has been authorized a tenant-role pair (Pb,member), thus

AuthorizedR(Mallory, P b,member) evaluates to true.

However, TenantRoleDom(Pb,member,Da) evaluates to
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false, as the pair (Pb,member) does not belong to domain

Da. Then, the whole ownership predicate unfolded for this

case is evaluated to true. In this case, the output of sugar

is SAT, which confirms that Mallory violates the common

ownership property and further presents the cause of the

violation, i.e., (d = 123, r = 9, t = 1233, u = 40569).

Algorithm 1: Runtime Compliance Verification

procedure INITIALIZE(Properties,CloudOS)

rawData = collectData(CloudOS)

verData = processData(rawData)

for each property pi ∈ Properties do

Resultt0,pi= Verify (pi ,verData)

procedure RUNTIME(Event,Resultt0 ,Properties)

for each property pi ∈ Properties do

∆i = processData(event.parameters)

if incremental-method(pi ) = custom then

custom-algo(event,pi ,Resultt0,pi ,∆i)

else

deltaVerify(event,pi ,Resultt0,pi ,∆i)

return Resultt
procedure DELTAVERIFY(event,pi ,Resultt0,pi ,∆i)

Resultt,pi = verify(pi ,∆i)

Runtime Verification. Our runtime verification engine imple-

ments Algorithm 1. Firstly, the interceptor module intercepts

each management operations based on the existing intercepting

methods (e.g., audit middleware [36]) supported in OpenStack.

Events are primarily created via the notification system in

OpenStack; Nova, Neutron, etc. emit notifications in a JSON

format. Here, we leverage the audit middleware in Keystone

to intercept Keystone, Neutron and Nova events by enabling

the audit middleware and configuring filters. Secondly, the

data processing engine handles the intercepted parameters

to perform similar data processing operations as discussed

previously. The processed data is denoted as ∆i. Finally,

the runtime verification engine performs incremental steps

either using the deltaVerify method, which involves Sugar, or

custom algorithms. Figures 5 and 6 show the incremental steps

for the common ownership and permitted action properties

respectively.

There exist difficulties in locating relevant information,

e.g., the initiator of Keystone API calls is missing, and in

obtaining adequate notifications from Ceilometer for Keystone

events. Therefore, to obtain sufficient and proper information

about user events to conduct the auditing, we collect Neutron

notifications from the Ceilometer database.

Start

Event.name?

  Δi    Resultt0

Delete a roleGrant a role

    Resultt = deltaVerify(Δi)    

Δi = Resultt0

Resultt = Resultt0

No Yes

Resultt = Resultt0 - Δi Resultt = No violation

End

No Yes

Fig. 5. Showing the runtime steps for the common ownership property

Dashboard & Reporting Module. We further implement the

web interface (i.e., dashboard) in PHP to place audit requests

and view audit reports. In the dashboard, tenant admins can

initially select different standards (e.g., ISO 27017, CCM

V3.0.1, NIST 800-53, etc.). Afterwards, security properties

under the selected standards can be chosen. Additionally,

admins can select any of the following verification options: i)
runtime verification, and ii) retroactive verification. Once the

verification request is processed, the summarized verification

results are shown and continuously updated in the verifica-

tion report page. The details of any violation with a list of

evidences are also provided. Moreover, our reporting engine

archives all the verification reports for a certain period.

Start

Event.name?

  Δi    Resultt0  Δi    Resultt0

Delete a role Grant a role

    i    Res

Resultt = Resultt0 Resultt = Resultt0 - Δi

  Δi = Resultt0

Resultt = Resultt0

No NoYes Yes

Resultt = Resultt0 - Δi Resultt = No violationEnd

YesNo

Fig. 6. Showing the runtime steps for the permitted action property

C. Integration to OpenStack Congress

To demonstrate the service agnostic nature of our frame-

work, we further integrate our auditing method with Open-

Stack Congress [10]. Congress implements policy as a service

in OpenStack in order to provide governance and compliance

for dynamic infrastructure. Congress can integrate third party

verification tools using a data source driver mechanism. Using

Congress policy language that is based on Datalog, we define

several tenant specific security policies as same as security

properties described in Section II-B. We then use our pro-

cessed data to detect those security properties for multiple

tenants. The outputs of the data processing engine in both

cases of initialization and runtime are in turn provided as

inputs for Congress to be asserted by the policy engine.

This integrates compliance status for some policies whose

verification is not yet supported by Congress (e.g., permitted

action, minimum exposure).

V. EXPERIMENTS

This section evaluates the performance of this work by mea-

suring the execution time, and memory and CPU consumption.

A. Experimental Settings

We collect data from the OpenStack setup inside a lab

environment. Our OpenStack version is Mitaka (2016.10.15)

with Keystone API version v3. There are one controller node

and three compute nodes, each having Intel i7 dual core CPU

and 2 GB memory with the Ubuntu 16.04 server. To make

our experiments more realistic, we follow recently reported

statistics (e.g., [4] and [37]) to prepare our largest dataset

consisting 100,000 users, 10,000 tenants, and 500 domains.

For verification, we use the V&V tool, Sugar V2.2.1 [34].

We conduct the experiment for 12 different datasets in total.

All data processing and V&V experiments are conducted on

a PC with 3.40 GHz Intel Core i7 Quad core CPU and 16 GB

memory, and we repeat each experiment 1,000 times.
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Fig. 7. Comparing the verification time required after each event for our
system and the retroactive approach (e.g., [9]) for the (a) common ownership
and (b) permitted action properties. Here, E1=initialization, E2=grant a role,
E3=delete a role, E4=delete a user and E5=delete a tenant. The chart in
(c) shows total size (in Kilo Bytes) of the data to be verified both for our
approach and a naive approach for different properties (where CO: common
ownership, PA: permitted action, ME: minimum exposure, C: cardinality, ND:
no duplicate ID). The results are for our largest dataset.

B. Results

The objective of the first set of our experiments (see Fig. 7)

is to demonstrate the time and memory efficiency of our

solution, and to compare the performance with a retroactive

auditing approach similar as in [9]. Firstly, Fig. 7a shows

time in milliseconds required for our runtime verification

framework for the common ownership property. Our runtime

verification requires a relatively expensive (i.e., about 2.5

seconds) initialization phase, similar to that of the retroactive

approach. Afterwards, our runtime approach takes less than

100 ms; whereas, the retroactive approach always takes 2.5

seconds. Secondly, Fig. 7b compares time in milliseconds

required for verifying the permitted action property by our

framework and a retroactive verification method. For this

property, we obtain results of the same nature as the previous

one i.e., requiring only a relatively expensive (i.e., about 3.5

seconds) initialization phase followed by runtime verification

costing maximum 500 ms. For the permitted action property,

after the delete a role event, a search for a certain role is

performed; hence the verification time reaches the maximum

value. Otherwise, verification time is within 100 ms for both

properties. Finally, Fig. 7c depicts the comparison between

memory requirement for both approaches while verifying

different properties. The retroactive approach requires 12 MB

to 17 MB space, as each time we have to load the whole

verification data. Whereas, in the runtime approach, mostly

we perform verification only on the changed data, therefore it

takes maximum 1 MB memory.

Our second set of experiments (see Fig. 8) is to demonstrate

the time efficiency of individual phases of our solution. Firstly,

Fig. 8a shows time in milliseconds required for data collec-

tion, data processing and compliance verification during the

initialization phase to verify the common ownership property

for different cloud sizes (e.g., the number of users). The

obtained results show that the verification execution time

is less than 2 seconds for fairly large numbers of users.

Knowing that this task is performed only once upon each

request, we believe that this is an acceptable overhead for

verifying a large setup. Fig. 8b shows the total time required

for separately performing the initialization phase for common

ownership and minimum exposure properties, and also for

both of the properties together. We can easily observe that

the execution time is not a linear function of the number

of security properties to be verified. In fact, we can see
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(a) Time required for each step during the initialization phase for the
common ownership property while varying the number of users. Time for
the data collection (right) is shown separately, as it is a one-time effort. In
all cases, number of domains is 500 and number of tenants is 10,000.
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(b) Total time required to perform the initialization phase for common
ownership, minimum exposure and both properties together, by varying
the number of users with fixed 5, 000 tenants (left) and the number
of tenants with fixed 30,000 users (right). In all cases, number of
domains is 500. Note that time in curves encompasses all three steps
(collection, processing and verification). For the curve of two properties,
data collection is performed one time.
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(d) Time required to perform the runtime phase of the common ownership
(left) and permitted action (right) properties for different events, by
varying the number of tenants with 10 users per tenant. In all cases,
number of domains is 500.

Fig. 8. Execution time for each step during initialization and runtime phases
for different properties and different events using our framework

that verifying more security properties would not lead to a

significant increase in the execution time. Fig. 8c shows the

total time required for separately performing the runtime phase

for common ownership and permitted action properties for

different cloud sizes. The obtained results support that the

verification time for the permitted action (i.e., up to 500 ms)

is more than that of the common ownership (i.e., up to 100

ms). Fig. 8d further depicts the effect of different events on the

runtime phase for different security properties, while varying

the number of tenants up to 10,000. As our runtime phase is

an incremental approach and verifies mainly parameters of the

events (as shown in Fig. 7c), the size of the cloud affects the
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verification time very less.
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common ownership property by varying the number of users with
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In both cases, there are 500 domains.
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10,000 tenants (left) and number of tenants with 60,000 users (right).
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(d) Peak CPU usage (left) and peak memory usage (right) to perform
the runtime phase of the common ownership property for different
events, by varying the number of tenants with 10 users per tenant.
In all cases, number of domains is 500.

Fig. 9. CPU and memory usage for the initialization and runtime phases

Our third experiment (see Figures 9a (left), 9b and 9d (left))

measures the CPU usage (in %) during the initialization and

runtime phases. The left chart in Fig. 9a depicts the fact

that the data collection step requires significantly higher CPU

usage than the other two steps. However, the average CPU

usage for data collection is 30%, which is reasonable since

the verification process lasts only a few seconds. Note that,

we conduct our experiment in a single PC; if the security

properties can be verified through concurrent independent

Sugar executions, we can easily parallelize this task by running

several instances of Sugar on different VMs in the cloud envi-

ronment. Thus, performing verification using the cloud or even

with multiple servers possibly reduces the cost significantly.

For the other two steps, the CPU cost is around 15%. In

Fig. 9b, we measure the peak CPU usage (in %) consumed

by different steps while verifying the common ownership

property. Accordingly, the CPU usage grows almost linearly

with the number of users and tenants. We observe a significant

reduction in the increase rate of CPU usage for datasets with

45,000 users or more. Note that, other properties show the

same trend in CPU consumption, as the CPU cost is mainly

influenced by the data collection step. Fig. 9d (left) shows that

runtime phase expectedly requires negligible CPU (i.e., up to

4.7%) in comparison to the initialization phase.

Our final experiment (Figures 9a (right), 9c and 9d (right))

measures the memory usage during the initialization and

runtime phases. The right chart in Fig. 9a shows that the

data collection step is the most costly in terms of memory

usage. However, the highest memory usage observed during

this experiment is only 0.2%. Fig. 9c shows that the rise in

memory consumption is only observed beyond 50,000 users

(left) and 8,000 tenants (right). We investigated the peak in

the memory usage for 50,000 users and it seems that this is

due to the internal memory consumption by Sugar. Fig. 9d

(right) depicts the memory usage by our runtime phase and

further supports that the runtime phase deals with significantly

smaller data set (as also shown in Fig. 7c).

Although we report results for a limited set of security

properties, the use of formal methods for verifying these

properties shows very promising results. Particularly, we show

that the time required for our solution grows very slowly with

the number of security properties. As seen in Fig. 8b, an

additional security property adds only about 3 seconds to the

initial effort. Therefore, we anticipate that verifying a large

list of security properties would still be practical.

VI. DISCUSSION

Adapting to Other Cloud Platforms. Our solution is de-

signed to work with most popular cloud platforms (e.g., Open-

Stack [7], Amazon EC2 [16], Google GCP [18], Microsoft

Azure [17]) with a minimal one-time effort. Once a mapping

of the APIs from these platforms to the generic event types are

provided, rest of the steps in our auditing system are platform-

agnostic. Table VI enlists some examples of such mappings.
Generic Event Type OpenStack [7] Amazon EC2-VPC [16] Google GCP [18] Microsoft Azure [17]

create user POST /v3/users aws iam create-user gcloud beta com-

pute users create

az ad user create

delete user DELETE

/v3/users/{user id}
aws iam delete-user –user-

name

gcloud beta com-

pute users delete

az ad user delete

assign role /v3/users/{user id}
/roles/{role id}

aws iam attach-role-policy gcloud projects add-

iam-policy-binding

az role assignment

create

create role POST /v3/roles aws iam create-role gcloud beta iam

roles create

az role definition cre-

ate

delete role DELETE

/v3/roles/{role id}
aws iam delete-role gcloud beta iam

roles delete

az role definition

delete

TABLE VI
MAPPING EVENT APIS OF DIFFERENT CLOUD PLATFORMS TO GENERIC

EVENT TYPES.

Handling Extreme Situations. There might be some extreme

cases where our solution may act differently. For instance, if

the cloud logging system fails resulting from any disruption or

failure in the cloud, then our auditing system will be affected.

As in our threat model (in Section II-C), we assume that our

solution relies on the correctness of the input data (including

the logs) from the cloud. Any other failure or disruption

in the cloud must be detected by our system. Also, if our

system including the formal verification tool (e.g., Sugar)

fails, till now there is no self-healing or self-recovery feature.

Therefore, in this extreme case, the efficiency of the system
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will be affected and a full (instead of incremental) verification

will be required to recover from this failure.

The Rationale behind our Incremental Approach. The

incremental verification of a given security property involves

instantiating and solving the security property predicates for

the affected elements in the supports of the involved relations

(as stated in Section III-D). Therefore, any modification to the

system data resulted from cloud events (e.g., grant role, delete

role, etc.) would not directly change the security property

expression itself although the corresponding support may need

to be changed. For example, if a role is granted, the only

change is that the relationships involving the entity role in the

model would include a new element in their supports.

VII. RELATED WORK

Table VII compares existing related works for the cloud.

Firstly, the existing approaches are categorized into: retroac-

tive, intercept-and-check and proactive. Secondly, these works

mainly cover three major levels: user, network and virtual

infrastructure. Thirdly, we identify several features to differ-

entiate our work from others. The no-future-plan feature is

checked when a proactive or intercept-and-check approach

does not require any future change plan; for retroactive

approaches this feature is not applicable (N/A). The first-

order-logic feature is checked when a work can verify any

security property that is expressed in first order logic. We also

identify the works that support verification on RBAC, ABAC

and SSO. Finally, the most works are specifically designed

for a particular cloud platform. In summary, our work differs

from the existing works as follows. First, this work offers an

intercept-and-check approach to audit the user-level at runtime.

Second, only our work supports security properties related to

RBAC, ABAC and SSO. Thirdly, our approach requires no

future change plan for the verification process. Finally, this

work explains how it can be adapted to other cloud platforms.
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CloudRadar [38] - • - - - • N/A - - - - - - • -
Weatherman [11] - • • - - • - - - - - - - • -

Majumdar et al. [9] • - - • - - N/A • • - - • - - -
Madi et al. [8] • - - - • • N/A • - - - • - - -

Majumdar et al. [12] - • • • • • • - • - - • - - -
Doelitzscher et al. [39] • - - - - • N/A - - - - • - - -

Ullah et al. [40] • - - - - • N/A - - - - • - - -
Congress [10] • • • • • • - - - - - • - - -
SecGuru [41] • - - - • - N/A • - - - - • - -
QRadar [42] • - - • • • N/A - - - • - - • -
This work - • - • - - • • • • • • - - •

TABLE VII
COMPARING DIFFERENT EXISTING SOLUTIONS. THE SYMBOL (•)

INDICATES THAT THE PROPOSAL OFFERS THE CORRESPONDING FEATURE.

Verifying security compliance in the cloud has recently been

explored. For instance, in [8], [9], formal auditing approaches

are proposed for retroactive security compliance checking in

the cloud. The works in [40], [43] also support retroactive

auditing. Unlike our proposal, those approaches can detect

violations only after they occur, which may expose the system

to high risks. There are several works (e.g., [44], [45], [46])

offering runtime security check in the cloud. VeriFlow [44] and

NetPlumber [45] monitor network events and check network

policies at runtime to capture bugs before or as soon as they

occur. Designing cloud monitoring services based on security

service-level agreements have been discussed in [46]. There

are several other works that target auditing data location and

storage in the cloud (e.g., [47], [48], [49], [50]) and others

target infrastructure change auditing (e.g., [40], [39]).

Several existing efforts (e.g., [51], [52], [53], [54]) verify

access control policies at the design time. In most of these

works, cloud-related user-level security properties are not

considered. There are some efforts (e.g., [55], [15], [56], [57])

towards proposing multi-domain/tenant access control models.

Gouglidis et al. [31] utilize model-checking to verify cus-

tom extensions of RBAC with multi-domain against security

properties. Lu et al. [58] use set theory to formalize policy

conflicts in the context of inter-operation in the multi-domain

environment. In contrast to those works, we are dealing

with the verification of not only the policies but also their

implementations, which involve efficient techniques to collect,

process, and verify large amount of data at runtime.

There are few other works (e.g., [12], [11], [10]) offering

runtime security policy checking in the cloud. Our previous

work in [12] proactively verifies security compliance very

efficiently through pre-computation by utilizing dependency

models. However, there are several properties (e.g., minimum

exposure, proper constraint checking, session time-out) which

cannot be captured through the dependency models. On the

other hand, this paper is capable of verifying a wider range

of properties. Weatherman [11] aims at mitigating misconfig-

urations and enforcing security policies in a virtualized infras-

tructure. However, expensive computations after each critical

event causes significant delay. Our work overcomes this lim-

itation by using incremental verification. Congress [10] is an

OpenStack project offering similar features as Weatherman.

Several industrial efforts include solutions to support auditing

in specific cloud environments. For instance, SecGuru [41]

audits Microsoft Azure datacenter using the SMT solver Z3.

IBM provides a monitoring tool integrated with QRadar [42],

to collect and analyze events in the cloud. Amazon offers

web API logs and metric data to their AWS clients by AWS

CloudWatch & CloudTrail [59] to facilitate auditing. Although

those efforts may assist auditing tasks, we support a wider set

of user-level security properties.

VIII. CONCLUSION

Despite existing efforts, runtime security auditing in cloud

still faces many challenges. In this paper, we proposed a

runtime security auditing framework for the cloud with special

focus on the user-level including different access control and

authentication mechanisms e.g., RBAC, ABAC, SSO, and we

implemented and evaluated the framework based on Open-

Stack, a popular cloud management system. Our experimental

results showed that our incremental approach in runtime

verification reduces the response time to a practical level.

(e.g., less than 500 milliseconds to verify 100,000 users). This

response time is satisfactory when the management operations

are manually done by the administrators. The current approach

would be insufficient to provide the same response time in
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the case of batch execution for management operations, when

these operations are executed in short intervals and if the

subsequent operations impact the same property. As future

work, to address this use case, we consider maintaining a

scheduler including an event queue with different threads for

different tasks in order to verify properties concurrently and

therefore reduce the response time in this case.
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