
NFVGuard: Verifying the Security of Multilevel

Network Functions Virtualization (NFV) Stack

Alaa Oqaily∗, Sudershan L T∗,Yosr Jarraya†, Suryadipta Majumdar∗, Mengyuan Zhang†,

Makan Pourzandi†, Lingyu Wang∗, Mourad Debbabi∗

∗Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada

Email:{a oqaily, s akshma, smajumdar, wang, debbabi}@encs.concordia.ca
†Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada

Email:{yosr.jarraya, mengyuan.zhang, makan.pourzandi}@ericsson.com

Abstract—Network Functions Virtualization (NFV) enables
agile and cost-effective deployment of multi-tenant network
services on top of a cloud infrastructure. However, the multi-
tenant and multilevel nature of NFV may lead to novel security
challenges, such as stealthy attacks exploiting potential inconsis-
tencies between different levels of the NFV stacks. Consequently,
the security compliance of a multilevel NFV stack cannot be
sufficiently established using existing solutions, which typically
focus on one level. Moreover, the naive approach of separately
verifying every level could be expensive or even infeasible. In
this paper, we propose, NFVGuard, the first multilevel approach
to the formal security verification of NFV stacks. Our key
idea is to conduct the security verification at only one level,
and then assure that verification result for other levels by
verifying the consistency between adjacent levels. We integrate
NFVGuard with OpenStack/Tacker, a popular platform for the
NFV deployment, and experimentally evaluate its effectiveness.

Index Terms—NFV, Security Verification, Tacker, OpenStack,
Formal Verification, Topology Consistency

I. INTRODUCTION

The popularity of NFV is on the rise (e.g., 60% of net-

work service providers will be adopting NFV by 2021 [25]).

By virtualizing proprietary physical devices in the network

architecture, NFV allows operators to scale their network

capabilities on demand and with a lower cost. On the other

hand, an NFV stack is typically a complex system that involves

multiple levels of virtualization, and the managerial compo-

nents could operate at each level autonomously, namely, the

“split-brain” design [3]. Such added complexity could become

a double-edged sword that leads to novel security threats, such

as security breaches at lower levels of an NFV stack that

are invisible to end users [16]. The potential inconsistencies

between different levels mean that, to ensure the security

compliance of an NFV stack, security properties (e.g., network

isolation) must be valid across all levels.

To that end, most existing works (e.g., [7], [8], [21], [29],

[30], [37], [38]) are insufficient since they typically focus on

one particular level of the NFV stack, such as service function

chaining (SFC). Moreover, a naive solution to separately verify

every level of the NFV stack would require each security

property to be interpreted and re-defined at all levels, which

could be expensive or even infeasible in practice. We illustrate

this limitation and our key idea through a motivating example.

Motivating Example. The left side of Figure 1 shows a

simplified view of the NFV stacks of two tenants, Bob and

Eve (as indicated by the two dashed line boxes), which involve

four levels (as depicted by the shaded areas). Knowing that

a malicious tenant, such as Eve, could potentially inject a

malicious virtual machine VM5 into Bob’s network (e.g., to

secretly inspect his traffic) directly at L3, without causing any

detectable changes at upper levels 1, the provider is concerned

with the following question: “Are Bob’s and Eve’s virtual

networks properly isolated at all levels?”
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Fig. 1: A motivating example to highlight the challenge of

multilevel security verification in NFV and provide a hint of

our idea

As shown on the right side of the figure, a naive solution

is to simply verify all four levels. However, this solution can

become expensive with the growing number and complexity of

security properties. Furthermore, it may not always be feasible

to interpret and re-define a security property across two non-

adjacent levels (e.g., re-defining a L1 property at L4). To

that end, our key idea is to verify every property at the level

where it is specified (e.g., L2 in this case), and then implicitly

extend such verification results to other levels by verifying the

consistency between adjacent levels.

More specifically, we propose a multilevel security ver-

ification approach, namely, NFVGuard, to assure security

properties for all levels of an NFV stack. First, we identify

NFV-related security properties and consistency properties by

1By exploiting real-world vulnerabilities, e.g., CVE-2015-3456 [22], CVE-
2015-7835 [22], or CVE-2018-10853 [22] in a specific way [16].



studying relevant security standards and NFV specifications

(e.g., IETF-RFC7498 [12] and ETSI [3]). Second, we develop

our verification approach by collecting relevant configuration

data from different components, correlating data at each

level, and aggregating data between different levels. Third,

we utilize formal methods to verify the compliance of the

system against security and consistency properties and provide

audit evidences. Finally, to demonstrate the applicability of

our approach, we implement our solution based on an Open-

Stack/Tacker [24] testbed, and evaluate its efficiency through

experiments using both real and synthetic data. In summary,

our main contributions are as follows.

• As per our knowledge, we are the first to propose a novel

multilevel security verification approach that can ensure

a security property is valid throughout the NFV stack

without explicitly verifying it at all levels.

• We design our solution for formal verification by col-

lecting, correlating and aggregating audit data from the

different NFV stack levels, and by leveraging a Constraint

Satisfaction Problem (CSP) solver, Sugar [28].

• We implement and integrate our solution into Open-

Stack/Tacker [24], which is a popular platform to deploy

NFV [23], and our experimental results demonstrate its

efficiency and practicality.

The remainder of the paper is organized as follows. Sec-

tion II provides the background, the threat model and the

challenges. Section III presents our methodology. Section

IV details the implementation and reports on experimental

results. Section V reviews the related work. Finally, Section

VI concludes the paper.

II. PRELIMINARIES

This section first provides a background on NFV, and then

defines our threat model and identifies the challenges.

A. Background on NFV

NFV is a network architecture concept that virtualizes

various network functions, such as routers, firewalls, load

balancers, and intrusion detection systems (IDS) [5]. The

left side of Figure 2 illustrates the ETSI NFV reference

architecture [5], which depicts two abstraction levels, namely,

the Virtual Network Function (VNF) level, which provides a

high-level representation of network functions, and the NFV

Infrastructure (NFVI) level, which represents the underlying

cloud infrastructure. The right side of Figure 2 illustrates

the multilevel NFV deployment model [16], which comple-

ments the ETSI architecture with deployment details found in

multiple open source platforms. Specifically, the deployment

model depicts the NFV stack at four abstraction levels, i.e.,

Service Orchestration (L1) (which supports the specification,

on-boarding, and lifecycle management of network services),

Resource Management (L2) (which supports the instantiation

of network services and the management of compute, storage,

and network resources), Virtual Infrastructure (L3) (which

hosts the virtual resources needed to support upper levels,

and optionally the SDN controller (SDN-C)), and Physical

Infrastructure (L4) (which includes all the physical resources).

Table I lists the NFV-specific terms that will be used later in

the paper.
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Fig. 2: The multilevel NFV model [16]

Acronym Full Name Acronym Full Name

CP Connection Point SDN-C SDN Controller

VIM Virtual Infrastructure Manager VDU Virtual Deployment Unit

OVS Open vSwitch NFP Network Function Path

NFVO NFV Orchestrator VNF Virtual Network Function

NS Network Service VNFD VNF Descriptor

NSD Network Service Descriptor VNFFG VNF Forwarding Graph

PPG Port Pair Group VNFFGD VNFFG Descriptor

SFC Service Function Chain VNFM VNF Manager

TABLE I: Summary of the NFV-specific terms used in the

paper

B. Threat Model and Challenges

Our in-scope threats include both external attackers who

exploit existing vulnerabilities in the NFV stack, and insiders

such as cloud users and tenant administrators who cause

security breaches either by mistakes or with malicious in-

tentions. Similar to most security verification solutions, we

assume the integrity of the audit input data collected through

logs and database records and we trust the NFV provider.

Therefore, out-of-scope threats include attacks that do not

cause any visible violation of the specified security properties,

and attacks by those adversaries who can remove or tamper

with logged events. Finally, although a security verification

solution can detect a violation of security properties, it is not

designed to attribute such a violation to underlying vulner-

abilities (i.e., vulnerability analysis) or specific attacks (i.e.,

intrusion detection).

The security verification of an NFV stack exhibits several

unique challenges. First, as explained in Section II-A, an NFV



stack is a complex system with many inter-dependent entities

located at different abstraction levels. Therefore, verifying its

security requires a systematic understanding of the semantics

of all the entities and their relationships inside the NFV stack.

Second, to verify a given security property, we first need

to identify all the involved data sources and what data to

collect from each source, e.g., to verify the traffic isolation

property of an SFC, data would need to be collected from

the VDUs at L2, and from the VMs and vSwitches at L3.

Third, since the data sources are typically scattered on multiple

servers and across different levels, the collected data needs

to be correlated and aggregated, e.g., following our previous

example, data must be correlated among multiple OpenFlow

tables from different servers, and the VDU, VM, and vSwitch

data need to be aggregated across levels L2 and L3 based on

their relationships. We will address those challenges in the

coming section.

III. METHODOLOGY

This section first presents an overview of our multilevel

verification approach, NFVGuard, and then elaborates on each

of its main steps.

A. NFVGuard Overview

Figure 3 shows an overview of our approach. There are three

major steps. First, we identify both NFV-related security and

consistency properties from existing standards and literature

(detailed in Section III-B). Second, we identify the data

sources for verifying each security and consistency property,

and design data processing techniques to correlate data at

each level and aggregate data across different levels (detailed

in Section III-C). Finally, we formulate the properties in the

First Order Logic (FOL), instantiate them using the processed

data, and verify them using a formal method tool (detailed in

Section III-D).

B. Identifying Security and Consistency Properties for NFV

This step is to identify both security and consistency

properties relevant to an NFV stack. For this purpose, we

conduct extensive studies of both standards related to NFV

(e.g., IETF-RFC7498 [12] and ETSI [3]), and standards related

to various components of an NFV stack, such as cloud and

SDN (e.g., ISO 27002 [10] and CCM [4]), since the security

considerations of the latter will be inherited by the NFV stack.

Table II shows examples of both security and consistency

properties, their instantiation as sub-properties, descriptions of

the sub-properties, and corresponding standards that require

those properties for security compliance. Note that, although

this list is not meant to be exhaustive, it can be easily extended

to include other security and consistency properties, and even

user-defined properties, as long as these can be formulated

using FOL and verified through formal method, as shown in

Section III-D.

C. Data Collection and Processing

In the following, we detail the data collection and processing

steps.

Data Collection. To verify each security and consistency

property, different data need to be collected from multiple

sources across several levels in an NFV stack. The main

data sources are logs and configuration files gathered from

each level. For example, as shown in Figure 4, to verify the

VNFFG configuration consistency between both L1/L2 and

L2/L3, we need to collect the VNFFG specification from the

Tacker database at L1 (depicted as part of a TOSCA file for

simplicity), the data about ports, port pairs and port chains

from the Nova and Neutron databases at L2 (depicted as a

single table for simplicity), and the OpenFlow rules at L3

from multiple servers.

Data Correlation. Due to the distributed nature of virtual

resources involved in a network service, the collected data

usually need to be correlated within each level based on their

relationships. For example, the bottom of Figure 4 shows that

the VNFFG under verification is implemented at L3 as three

VMs (VM 02, VM 04, and VM 05) hosted on two physical

servers. The traffic steering information (which determines

how traffic will flow through those VMs) needed for the

verification is stored on both physical servers. Moreover,

although not shown in the figure, such information is also

scattered in many tables on each physical server (e.g., to check

whether VM 04 is forwarding traffic to VM 05, we have

to follow the forwarding rules stored in tables 0, 5, 10 and

the Group table). Therefore, we need to correlate all those

data in order to piece together sufficient information for the

verification.

Data Aggregation. After correlating data at each level, we

need to further aggregate the data across different levels of the

NFV stack to verify consistency properties. For example, in

Figure 4, by linking the VNFFG specification at L1 (left side

of the figure) to the Nova and Neutron databases at L2 (upper

right), and to the OpenFlow rules at L3 (bottom), we could

finally verify that the VNFFG under verification indeed include

one chain, consisting of three VNFs, implemented using three

VMs, and hosted on two physical servers.

D. Formal Verification

To verify both security and consistency properties, we

propose to formalize these together with the audit data as a

Constraint Satisfaction Problem (CSP), a time-proven tech-

nique for expressing many complex problems, and use Sugar

[28], a well-established constraint solver, to check whether

these properties are satisfied. Specifically, for each property,

we encode the NFV system entities as the domains and

instances of such entities as the CSP variables. For example,

the entity Tenant is defined as a finite domain ranging over

integer, such that (domain TENANT 0 max_tenant) is

a declaration of tenant domain, where each value between

0 and max_tenant is for an instance. The variable t that

corresponds to the Tenant instance (e.g., 18e552) will have a

value within the domain TENANT (e.g., 10). The relationship

between the system entities is encoded as an CSP relation

with a support consisting of tuples of related instances, e.g.,
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Security Properties Sub-Properties Description Standards

Topology

isolation

[18]

Mapping unicity

VLANs-VXLANs
VLANs and VXLANs should be mapped one-to-one on a given server ISO [11], NIST800

[27], CCM [4],

ETSI [3], IETF-

RFC7665,

RFC7498 [12]

Correct association

Ports-Virtual Networks

VNFs should be attached to the virtual networks they are connected

to through the right ports

Mappings unicity

Ports-VLANs
Ports should be mapped to unique VLANs

Physical resource

isolation [18]
No VNFs co-residence

VNFs of a tenant should not be placed on the same compute node as

VNFs of a non-trusted tenant

ISO [11], NIST800 [27],

CCM [4], ETSI [3]

Virtual resource

isolation [18]
No common ownership

Tenant-specific resources should belong to a unique tenant, unless pe-

rmitted by a user-defined policy

CCM [4], ETSI [3],

IETF-RFC7665, RFC-

7498 [12]

Policy and state

correctness [26]
-

A policy can be dynamically changing. The changed policy should be

reconfigured in VNF node as soon as possible

ETSI [3], [6], IETF-R

FC7665, RFC8459 [12]

Functionality of VNF

and VNFFGs [7], [37]
-

Check if VNFs and the composition (i.e., service chaining) of these

functions work as intended

ETSI [6], IETF-RFC-

7665, RFC8459 [12]

SFC ordering and

sequencing as defined

by the specification [8]

-
SFCs should maintain the order of VNFs with the correct traffic forw-

arding behavior as defined by the specifications

ETSI [3], [6], IETF-

RFC7665, RFC8459 [12]

Consistency Properties Sub-Properties Description Standards

Topology

consistency

[18], [19]

VNFFG configuration

consistency between

L1/L2

Consistency between the size of VNFFGs, the sequences of VNFs and

the classifiers at L1 and their parallel SFCs and classifiers definitions

at L2

ISO [11],

NIST800 [27],

CCM [4],

IETF-RFC-8459 [12],

ETSI [3], [6]

VNFFG configuration

consistency between

L2/L3

Consistency between the created SFCs and classifiers at L2 and their

implementation at L3 i.e., the same number of created VMs with the

correct order and traffic steering

TABLE II: Examples of consistency and security properties in NFV

the relation between the tenant and the SFC that he creates is

encoded as (relation HasChain 2 (supports(t1

sfc1)(t2 sfc2))). Those CSP relations describe the

current state of the system.

Each property is then expressed as predicates over the rela-

tions forming a CSP constraint. Those predicates correspond

to the negation of the properties so that, when Sugar solves

the constraints and finds no solution, those properties are

reported to hold. Table III shows some example properties and

their FOL expressions. For instance, for VNFFG configuration

consistency, the FOL expression specifies that the VNFFG

design at L1 is instantiated correctly as the corresponding

SFC configurations at L2, and that the SFC configuration at

L2 matches the traffic steering at L3. For the virtual resource

isolation, the FOL expression specifies that the VDUs that

composing a specific SFC at the management level are all

owned by a unique tenant, i.e., the owner of the SFC service.

For Mapping unicity VLANs-VXLANs, the FOL expression

specifies that all network topologies are properly isolated, i.e.,

all VLANs associated with ports of the same virtual network

on the same switch are mapped to a unique VXLAN across

servers.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we detail the implementation of NFVGuard

and present the experimental results to evaluate the perfor-

mance and overhead of our solution.



Fig. 4: An example of data collection, correlation, and aggregation

Security Properties FOL Expression

Virtual resource isolation
∀t1 ∈ Tenant, ∀sfc ∈ SFC, ∀vdu1, vdu2 ∈ V DU : HasChain(t1, sfc) ∧ SFCHasV DUs
(sfc, vdu1) ∧ SFCHasV DUs(sfc, vdu2) =⇒ HasV DU(t1, vdu1) ∧ HasV DU(t1, vdu2)

Mapping unicity VLANs

-VXLANs

∀vxlan1, vxlan2 ∈ V XLAN, ∀vlan ∈ V LAN, ∀sw ∈ OV S, ∀p ∈ PORT : IsAssignedV LAN(sw,
p, vlan) ∧ IsMappedToV XLANOnOV (sw, vlan, vxlan1) ∧ IsMappedToV XLANOnOV
(sw, vlan, vxlan2) =⇒ (not(vxlan1 = vxlan2))

Consistency Properties FOL Expression

VNFFG configuration

consistency between

L1 and L2

∀t1 ∈ Tenant, ∀fg ∈ V NFFG, ∀chain1 ∈ Chain, ∀path1 ∈ Path, ∀vnf1, vnf2 ∈ V NF, ∀cl ∈
Classifier, ∀s ∈ Src, ∀d ∈ Destination, ∀p ∈ Protocol : HasDefinedV NFFG(t1, fg) ∧ HasPath
(fg, path1) ∧ HasClassifier(path1, cl, s, d, p) ∧ BelongsToPath(chain1, path1) ∧ HasV NFs
(chain1, vnf1, vnf2) ⇔ HasDefinedSFC(t1, chain1) ∧ HasV DUs(chain1, vnf1, vnf2) ∧

HasClassifier(path1, cl, s, d, p) ∧ BelongsTo(vnf1, t1) ∧ BelongsTo(vnf2, t1)
VNFFG configuration

consistency between

L2 and L3

∀t1 ∈ Tenant, ∀chain1 ∈ Chain, ∀path1 ∈ Path, ∀vdu1, vdu2 ∈ V DU, ∀cl ∈ Classifier, ∀s
∈ Src, ∀d ∈ Destination, ∀p ∈ Protocol : HasDefinedSFC(t1, chain1) ∧ SFCHasV DUs
(chain1, vdu1, vdu2) ∧ HasClassifier(path1, cl, s, d, p) ⇔ CorrelatedF lows(s, d, p, vdu1, vdu2)

TABLE III: Examples of security and consistency properties represented in First Order Logic (FOL).

A. NFVGuard Implementation

The data collection component is implemented to col-

lect data from different OpenStack services, such as Tacker,

Nova [24], and Neutron [24], as well as from the Open

vSwitch (OvS) instances running on every compute node.

Specifically, we rely on the Tacker database to retrieve user-

defined descriptors uploaded to the VNFM and NFVO mod-

ules of Tacker (such as VNFD and VNFFGD) as the basis

for verifying most of the properties. We also rely on a

collection of OpenStack databases, e.g., Neutron database for

information about SFC networking (such as the sequence of

service functions, the traffic steering in-between, and the traffic

classifier) and Nova databases (table Instance) for information

about the tenant, the VDU, and the hosting machine. Finally,

we collect the OpenFlow tables and internal OvS databases

from all the compute nodes, e.g., checking for inconsistencies

between L2 and L3.

The data processing component is implemented in Python

and Bash scripts as follows. First, for each property, our

processing component identifies the involved relations, and the

supports of the relations are either fetched directly from the

collected data (such as the support of the relation BelongsTo)

or recovered after data correlation. Second, our processing

component formats each group of data as an n-tuple, i.e.,

(resource, tenant), (ovs, vlan, vxlan), etc. Finally, it uses the n-

tuples to generate part of the Sugar source code, and appends

it with the variable declarations, relationships, and predicates

for each security property. A customized script is developed

to generate the Sugar source code for the verification of each

property. The formal verification component is implemented

to feed the generated code into the Sugar SAT solver version

2.3.3 [28]. Sugar then produces the verification results to
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Fig. 5: Verification performance for the topology consistency properties, virtual resource isolation, and mapping unicity VLANs-

VXLANs by varying the number of VNFFGs (left), size of VNFFGs (middle), and VMs (right), respectively in (a) time, (b)

CPU, and (c) memory consumption

either state the property holds or provide evidences when the

property is breached.

B. Experiments

Experimental Settings. Our testbed is deployed on a Super-

Server 6029P-WTR equipped with Intel(R) Xeon(R) Bronze

3104 CPU @ 1.70GHz and 128GB of RAM. To evaluate the

performance of our solution, we generate 41 synthetic datasets

of different sizes. We conduct experiments on those different

datasets varying the number of VNFFGs from 1K to 5K, VNFs

per VNFFG from 10 to 50 (with a fixed set of 100 VNFFGs),

and VMs from 20K to 100K. Those datasets represent a

reasonably large NFV setups according to the literature [9].

All data processing and experiments are conducted on the

SuperServer with the verification tool, Sugar V2.3.3 [28], and

each experiment is performed 1,000 times.

Our experiments show that the performance of NFVGuard

largely depends on the properties to be verified. Therefore,

we report results on both consistency and security properties

that consume the most significant resources (time, CPU,



and memory). More specifically, these include the VNFFG

configuration consistency between VNFFGD at L1 and SFC

at L2 (to ensure the correctness of VNFFG implementation),

the VNFFG configuration consistency between SFC at L2

and OpenFlow rules at L3 (to ensure the correctness of SFC

implementation), the virtual resource isolation (L2), and the

mapping unicity VLANs-VXLANs (L3). Since the selected

consistency properties depend on the VNFFG-related relations,

we perform experiments by varying the number of VNFFGs

and the size of VNFFG. On the other hand, since the security

properties depend on the VM-related relations, we perform the

experiments by varying the number of VMs.

Time Consumption. The objective of the first set of ex-

periments is to evaluate the verification time required by

the aforementioned properties. Figure 5(a) (left) and (middle)

depict the verification time (in seconds) for the consistency

properties, while Figure 5(a) (right) shows the verification

time for the security properties. In general, the verification

time is less than six seconds for all the properties in the

largest dataset, and it increases almost linearly with the varied

number of resources. The consistency property verification

consumes more time for verifying between higher levels (L1

and L2, 1∼5s) than for lower levels (L2 and L3, 1∼3s). As to

security properties, the verification of mapping unicity VLAN-

VXLAN is more efficient (less than one second) and the time

grows more slowly than it is for virtual resource isolation (six

seconds for the largest dataset) as the latter has more complex

predicates involving a higher number of relation instances.

CPU Consumption. The second set of experiments evaluates

the CPU consumption for the aforementioned properties. In

general, the CPU consumption (in %) shares a similar trend

as the time consumption for most of the properties. We can

observe the size of VNFFG affects the CPU consumption more

than the number of VNFFGs. This is mostly because the CPU

consumption relies on the variables to be verified, i.e., the

number of VNFs. Note that the average VNFs per VNFFG is

smaller in Figure 5(b) (left) than in Figure 5(b) (middle), and

therefore, the CPU consumption increases more significantly

in the latter (from ∼18% to ∼28%). The verification of the

virtual resource isolation property consumes the most CPU

(∼40%), which again highlights the complexity of verifying

this property.

Memory Consumption. The third set of experiments fo-

cuses on evaluating the memory consumption for the selected

properties. Figure 5(c) depicts the memory usage (in %) for

the verification of the aforementioned properties. In general,

the memory consumption of all the properties is less than

1.3% of the 128GB of RAM on our server. Unlike the CPU

consumption, the number of VNFFGs impacts the memory

consumption more than the size of VNFFG does. This is

mostly because the amount of relations stored in memory

increases more significantly with the number of VNFFGs

(0.8%∼1.3%).

In summary, the experimental results show satisfactory

efficiency and scalability of our approach, and demonstrate in

general the feasibility of applying formal methods to NFV.

Additionally, we note that the performance of NFVGuard

can be further improved by distributing the verification tasks

among multiple compute nodes as these properties can be

verified independently from each other.

V. RELATED WORK

Most existing solutions (e.g., [7], [8], [21], [29], [30],

[37], [38]) in NFV focus on the verification of one particular

level (mostly SFC). In particular, ChainGuard [8] and SFC-

Checker [29] both verify the correct forwarding behavior

of SFCs. ChainGuard checks the flow rules to verify the

actual SFC traffic steering against the specifications, and SFC-

Checker additionally analyzes the internal forwarding behavior

of each network function. Moreover, vSFC [37] verifies a

wide-range of SFC violations (e.g., packet injection attacks,

flow dropping, and path non-compliance). Additionally, there

exist several works (e.g., [7], [21], [30], [38]) on verifying

the functionality and performance of SFCs. For instance,

vNFO [7] verifies a wide-range of SFC functionalities (e.g.,

performance and accounting). Similarly, SLAVerifier [38]

verifies the performance-related properties of SFC specified

under SLA, such as delay, packet loss, jitter, and network

availability. Marchetto et al. [21] propose an approach for

generating optimal placement of SFCs based on given per-

formance parameters (e.g., latency and CPU cycles) and

formal verification of reachability policies within the required

performance constraints. Wang et al. [30] propose a framework

to automatically detect the dependencies and conflicts between

network functions. Unlike all those works, the main focus of

NFVGuard is to ensure the security of an NFV stack at all

levels. Also, unlike NFVGuard, most of those works do not

formally model the verification problem.

Also, there exist other works (e.g., [2], [13]–[15], [17],

[20], [31]) that verify security properties in virtual networks,

e.g., clouds and SDN. Among them, ISOTOP [18] and Xu

et al. [32] cover the consistency between different cloud

layers. Additionally, there are other solutions, e.g., NetPlumber

[13], Veriflow [15], and NoD [17] that verify flow rules

against various security and functionality properties in virtual

networks. However, none of these works considers NFV, and

extending them to NFV would require significant efforts due

to the added complexity.

In the context of traditional networks, there are many works

on verifying network functions (a.k.a. middleboxes) [1], [33]–

[36]. Gravel [35] verifies the compliance of the middlebox

implementation with its specification using satisfiability mod-

ulo theories (SMT). APKeep [36] incrementally updates the

network model for real-time verification. Tiramisu [1] utilizes

multi-layer graph model to encode the network and different

custom algorithms for different categories of policies. Yousefi

et al. [33] express different network functions in a com-

positional programming abstraction to capture network state

changes. NetSMC [34] develops a customized symbolic model

checking algorithms for verification based on the network

model. However, all those methods are designed for traditional



networks and do not take into consideration many intrinsic

characteristics of virtual infrastructures such as a larger scale

and significantly higher elasticity and dynamicity.

VI. CONCLUSION

We have presented NFVGuard, a novel multilevel approach

to the formal security verification of NFV stacks. Specifically,

we identified NFV-related security and consistency proper-

ties, designed our solution for data collection and processing

techniques, and applied a formal method tool for verifica-

tion. We implemented our solution and integrated it into our

NFV testbed operating OpenStack/Tacker. We evaluated our

approach through experiments using synthetic data. The results

confirmed the efficiency and applicability of our approach.

Limitations and Future Work. First, the efficiency and

scalability of NFVGuard are limited by the underlying formal

method tool, and therefore, despite the satisfactory results

demonstrated in our experiments, it’s more practical to run

NFVGuard periodically or on demand after a change. There-

fore, one future direction is to explore more efficient tech-

niques using parallel, incremental, or proactive verification to

further improve the efficiency and scalability. Second, in order

to facilitate the verification, we intend to build a system model

that captures the system entities and their relationships in an

NFV stack and study the possibility of leveraging this model

to automate the specification of certain properties. Third,

although the general approach of NFVGuard is platform-

agnostic, the current implementation of data collection and

processing is still limited to OpenStack/Tacker. Our future

work will address this limitation through a more modular

design with concrete methodology for extending to other open-

source NFV platforms (e.g., OPNFV and OSM). Finally, our

list of security and consistency properties is still limited in

scope and not taking full advantage of the expressiveness of

the underlying formal method. To address this limitation, we

will continue building a more comprehensive repository of

NFV-related properties to cover security from other angles

(e.g., stateful VNFs).
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